[en] Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and processing contaminants, which may contaminate vegetable oils due to atmospheric fall-out or bad production
practices. Due to their carcinogenic and toxic effects, surveillance schemes and mitigation strategies are needed to monitor human exposure to PAHs. In particular, due to the lipophilic nature of these substances, edible oils may present unsafe levels of these compounds. Among these, olive oil, and in particular extra virgin olive oil, is a high-value commodity, also known for its health benefits. Therefore, the occurrence of contaminants in this product is not only of health concern but also causes economic and image damage. In this review, an overview of the occurrence of PAHs in all categories of olive oil is provided, as well as a description of the official methods available and the analytical developments in the last 10 years.
Disciplines :
Food science Chemistry
Author, co-author :
Bertoz, Valentina; University of Udine > Department of Agri-Food, Environmental and Animal Sciences
Purcaro, Giorgia ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Conchione, Chiara; University of Udine > Department of Agri-Food, Environmental and Animal Sciences
Moret, Sabrina; University of Udine > Department of Agri-Food, Environmental and Animal Sciences
Language :
English
Title :
A Review on the Occurrence and Analytical Determination of PAHs in Olive Oils
Publication date :
2021
Journal title :
Foods
eISSN :
2304-8158
Publisher :
MDPI AG, Switzerland
Special issue title :
Emerging Technologies for Determination of Contamination in Foods
Uylaşer, V.; Yildiz, G. The Historical Development and Nutritional Importance of Olive and Olive Oil Constituted an Important Part of the Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2014, 54, 1092–1101. [CrossRef]
Lee, M.L.; Novotny, M.V.; Bartle, K.D. Analytical chemistry of polycyclic aromatic compounds. J. Chromatogr. 1981, 19, 194.
Moreda, W.; Pérez-Camino, M.C.; Cert, A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159–171. [CrossRef]
Scientific Committee on Food (SCF). Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in Food; SCF/CS/CNTM/PAH/29 ADD1 Final; European Commission: Brussels, Belgium, 2002.
Moret, S.; Conte, L.S. A rapid method for polycyclic aromatic hydrocarbon determination in vegetable oils. J. Sep. Sci. 2002, 25, 96–100. [CrossRef]
Purcaro, G.; Moret, S.; Conte, L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013, 105, 292–305. [CrossRef] [PubMed]
Purcaro, G.; Barp, L.; Moret, S. Determination of hydrocarbon contamination in foods. A review. Anal. Methods 2016, 8, 5755–5772. [CrossRef]
Dorne, J.L.C.M.; Dorne, J.L.C.M.; Bordajandi, L.R.; Amzal, B.; Ferrari, P.; Verger, P. Combining analytical techniques, exposure assessment and biological effects for risk assessment of chemicals in food. TrAC Trends Anal. Chem. 2009, 28, 695–707. [CrossRef]
Zelinkova, Z.; Wenzl, T. The Occurrence of 16 EPA PAHs in Food—A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [CrossRef]
Sánchez-Arévalo, C.M.; Olmo-García, L.; Fernández-Sánchez, J.F.; Carrasco-Pancorbo, A. Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3528–3573. [CrossRef]
Fernández-Fernández, R.; Romero-González, R.; Frenich, A.G.; Vidal, J.M.L. Sample treatment and determination of polycyclic aromatic hydrocarbons and pesticide residues in olive oil. In Olive Oil and Health; Corrigan, J.D., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 169–196. ISBN 978-1-61728-653-7.
European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. EFSA J. 2005, 3, 282. [CrossRef]
Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. The role of stable free radicals, metals and pahs of airborne particulate matter in mechanisms of oxidative stress and carcinogenicity. In Environmental Science and Engineering (Subseries Environ. Sci.); Zereini, F., Wiseman, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 411–426.
Kocbach Bølling, A.; Pagels, J.; Yttri, K.E.; Barregard, L.; Sallsten, G.; Schwarze, P.E.; Boman, C. Health effects of residential wood smoke particles: The importance of combustion conditions and physicochemical particle properties. Part. Fibre Toxicol. 2009, 6, 29. [CrossRef] [PubMed]
Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [CrossRef] [PubMed]
Khairy, M.A.; Kolb, M.; Mostafa, A.R.; EL-Fiky, A.; Bahadir, M. Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). J. Hazard. Mater. 2009, 170, 389–397. [CrossRef] [PubMed]
Ma, Q.; Lu, A.Y.H. Drug-metabolizing Enzymes: A Group of Promiscuous Catalysts. In Handbook of Metabolic Pathways of Xenobiotics; Lee, P., Aizawa, H., Gan, L., Praksah, C., Zhong, D., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–22.
Ramesh, A.; Archibong, A.E.; Niaz, M.S. Ovarian susceptibility to benzo[a]pyrene: Tissue burden of metabolites and DNA adducts in F-344 rats. J. Toxicol. Environ. Health Part A Curr. Issues 2010, 73, 1611–1625. [CrossRef] [PubMed]
Pratt, M.M.; John, K.; Maclean, A.B.; Afework, S.; Phillips, D.H.; Poirier, M.C. Polycyclic aromatic hydrocarbon (PAH) exposure and DNA adduct semi-quantitation in archived human tissues. Int. J. Environ. Res. Public Health 2011, 8, 2675–2691. [CrossRef]
Tarantini, A.; Maître, A.; Lefèbvre, E.; Marques, M.; Rajhi, A.; Douki, T. Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells. Toxicology 2011, 279, 36–44. [CrossRef]
European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food-Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 1–114.
United States Environmental Protection Agency (US EPA). Water Quality Standards Handbook; US EPA: Washington, DC, USA, 1994.
European Commission (EC). 2005/108 of 4 February 2005 on the further investigation into the levels of polycyclic aromatic hydrocarbons in certain foods. Off. J. Eur. Union 2005, L34, 43–45.
European Commission (EC). Commission Regulation (EC) of No 208/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons. Off. J. Eur. Union 2005, L34, 3–5.
European Food Safety Authority (EFSA). Findings of the EFSA Data Collection on Polycyclic Aromatic Hydrocarbons in Food. EFSA J. 2007, 5, 1–55.
European Commission (EC). Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, L215, 4–8.
European Commission (EC). Comission Regulation (EC) No 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off. J. Eur. Union 2007, L88, 29–38.
European Commission (EC). Commission Regulation (EU) No 836/2011 of 19 August—amending Regulataion (EC) No 333/2007 laying down the methods of sampling and analysis for the official control of the levels lead, cadnium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstu. Off. J. Eur. Union 2011, L215, 9–16.
Rodríguez-Acuña, R.; Pérez-Camino, M.D.C.; Cert, A.; Moreda, W. Sources of contamination by polycyclic aromatic hydrocarbons in Spanish virgin olive oils. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 115–122. [CrossRef]
Moret, S.; Populin, T.; Conte, L.S.; Grob, K.; Neukom, H.P. Occurrence of C15-C45 mineral paraffins in olives and olive oils. Food Addit. Contam. 2003, 20, 417–426. [CrossRef]
Moret, S.; Purcaro, G.; Conte, L.S. Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties. Sci. Total Environ. 2007, 386, 1–8. [CrossRef]
Amzad Hossain, M.; Salehuddin, S.M. Polycyclic aromatic hydrocarbons (PAHs) in edible oils by gas chromatography coupled with mass spectroscopy. Arab. J. Chem. 2012, 5, 391–396. [CrossRef]
Gharbi, I.; Moret, S.; Chaari, O.; Issaoui, M.; Conte, L.S.; Lucci, P.; Hammami, M. Evaluation of hydrocarbon contaminants in olives and virgin olive oils from Tunisia. Food Control. 2017, 75, 160–166. [CrossRef]
Šimko, D.; Khunova, V.; Šcimon, P.; Hruba, M. Kinetics of sunflower oil contamination with polycyclic aromatic hydrocarbons from contaminated recycled low density polyethylene film. Int. J. Food Sci. Technol. 1995, 30, 807–812. [CrossRef]
Moret, S.; Conte, L.S. Polycyclic aromatic hydrocarbons in edible fats and oils: Occurrence and analytical methods. J. Chromatogr. A 2000, 882, 245–253. [CrossRef]
Moret, S.; Populin, T.; Conte, L.S. La contaminazione degli oli vegetali con oli minerali. Riv. Ital. Delle Sostanze Grasse 2009, 86, 3–14.
Hanshaw, W.; Nutt, M.; Chickos, J.S. Hypothetical thermodynamic properties. subcooled vaporization enthalpies and vapor pressures of polyaromatic hydrocarbons. J. Chem. Eng. Data 2008, 53, 1903–1913. [CrossRef]
Mafra, I.; Amaral, J.S.; Oliveira, M.B.P.P. Polycyclic Aromatic Hydrocarbons (PAH) in Olive Oils and Other Vegetable Oils. In Olives and Olive Oil in Health and Disease Prevention; Potential for Carcinogenesis; Academic Press: Cambridge, MA, USA, 2010; pp. 489–498.
Hua, H.; Zhao, X.; Wu, S.; Li, G. Impact of refining on the levels of 4-hydroxy-trans-alkenals, parent and oxygenated polycyclic aromatic hydrocarbons in soybean and rapeseed oils. Food Control. 2016, 67, 82–89. [CrossRef]
Rojo Camargo, M.C.; Antoniolli, P.R.; Vicente, E. Evaluation of polycyclic aromatic hydrocarbons content in different stages of soybean oils processing. Food Chem. 2012, 135, 937–942. [CrossRef] [PubMed]
Teixeira, V.H.; Casal, S.; Oliveira, M.B.P.P. PAHs content in sunflower, soybean and virgin olive oils: Evaluation in commercial samples and during refining process. Food Chem. 2007, 104, 106–112. [CrossRef]
Ma, Y.; Shi, L.; Liu, Y.; Lu, Q. Effects of neutralization, decoloration, and deodorization on polycyclic aromatic hydrocarbons during laboratory-scale oil refining process. J. Chem. 2017, 1–9. [CrossRef]
Kiralan, S.S.; Toptancı, İ.; Tekin, A. Further Evidence on the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) During Refining of Olive Pomace Oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800381. [CrossRef]
Ferrarese, E.; Andreottola, G.; Oprea, I.A. Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater. 2008, 152, 128–139. [CrossRef]
Kiralan, S.S.; Erdogdu, F.; Tekin, A. Reducing polycyclic aromatic hydrocarbons (PAHs) formation in olive pomace oil using microwave pre-heating of olive pomace. Eur. J. Lipid Sci. Technol. 2017, 119, 1–7. [CrossRef]
Alomirah, H.; Al-Zenki, S.; Husain, A.; Sawaya, W.; Ahmed, N.; Gevao, B.; Kannan, K. Benzo[a]pyrene and total polycyclic aromatic hydrocarbons (PAHs) levels in vegetable oils and fats do not reflect the occurrence of the eight genotoxic PAHs. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 869–878. [CrossRef]
Ergönül, P.G.; Sánchez, S. Evaluation of polycyclic aromatic hydrocarbons content in different types of olive and olive pomace oils produced in Turkey and Spain. Eur. J. Lipid Sci. Technol. 2013, 115, 1078–1084. [CrossRef]
Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of Polycyclic Aromatic Hydrocarbons in Olive and Refined Pomace Olive Oils using HPLC/FLD. J. Food Biosci. Technol. 2016, 6, 77–85.
León-Camacho, M.; Viera-Alcaide, I.; Ruiz-Méndez, M.V. Elimination of polycyclic aromatic hydrocarbons by bleaching of olive pomace oil. Eur. J. Lipid Sci. Technol. 2003, 105, 9–16. [CrossRef]
Purcaro, G.; Conte, L.S.; Moret, S. Contaminazione da Idrocarburi Policiclici Aromatici in Oli di Oliva Vergini Della Regione Puglia: Sviluppo dei Metodi di Analisi e Primi Risultati; 2002.
Stenerson, K.K.; Shimelis, O.; Halpenny, M.R.; Espenschied, K.; Ye, M.M. Analysis of Polynuclear Aromatic Hydrocarbons in Olive Oil after Solid-Phase Extraction Using a Dual-Layer Sorbent Cartridge Followed by High-Performance Liquid Chromatography with Fluorescence Detection. J. Agric. Food Chem. 2015, 63, 4933–4939. [CrossRef]
Drabova, L.; Tomaniova, M.; Kalachova, K.; Kocourek, V.; Hajslova, J.; Pulkrabova, J. Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils. Food Control. 2013, 33, 489–497. [CrossRef]
Krajian, H.; Odeh, A. Levels of 15 + 1 EU Priority Polycyclic Aromatic Hydrocarbons in Different Edible Oils Available in the Syrian Market. Polycycl. Aromat. Compd. 2016, 38, 369–378. [CrossRef]
Rascón, A.J.; Azzouz, A.; Ballesteros, E. Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control. 2018, 94, 268–275. [CrossRef]
Ju, H.; Kim, B.; Kim, J.; Baek, S.Y. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards. Food Chem. 2020, 309, 125639. [CrossRef]
Shi, L.K.; Liu, Y.L.; Liu, H.M.; Zhang, M.M. One-step solvent extraction followed by liquid chromatography-atmospheric pressure photoionization tandem mass spectrometry for the determination of polycyclic aromatic hydrocarbons in edible oils. Anal. Bioanal. Chem. 2015, 407, 3605–3616. [CrossRef]
Xu, T.; Tang, H.; Chen, D.; Dong, H.; Li, L. Simultaneous determination of 24 polycyclic aromatic hydrocarbons in edible oil by tandem solid-phase extraction and gas chromatography coupled/tandem mass spectrometry. J. AOAC Int. 2015, 98, 529–537. [CrossRef]
Taghvaee, Z.; Zahra, P.; Keramatollah, R.; Mohammad, F. Nanvazadeh Sara The potential of low temperature extraction method for analysis of polycyclic aromatic hydrocarbons in refined olive and refined pomace olive oils by HPLC / FLD. Nutr. Food Sci. Res. 2015, 2, 47–54.
Shi, L.K.; Zhang, D.D.; Liu, Y.L. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control. 2016, 62, 165–170. [CrossRef]
Lee, J.G.; Suh, J.H.; Yoon, H.J. Occurrence and risk characterization of polycyclic aromatic hydrocarbons of edible oils by the Margin of Exposure (MOE) approach. Appl. Biol. Chem. 2019, 62, 1–11. [CrossRef]
Zachara, A.; Gałkowska, D.; Juszczak, L. Method Validation and Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils by HPLC-FLD. Food Anal. Methods 2017, 10, 1078–1086. [CrossRef]
Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010, 1217, 6303–6326. [CrossRef]
Ridgway, K.; Lalljie, S.P.D.; Smith, R.M. Sample preparation techniques for the determination of trace residues and contaminants in foods. J. Chromatogr. A 2007, 1153, 36–53. [CrossRef]
International Organization for Standardization (ISO). Animal and Vegetable Fats and Oils-Determination of Benzo[a]Pyrene Content-Reverse-Phase High-Performance Liquid Chromatography Method; ISO 15302:1998; ISO: Geneva, Switzerland, 1998.
International Organization for Standardization (ISO). Animal and Vegetable Fats and Oils-Determination of Benzo[a]Pyrene-Reverse-Phase High Performance Liquid Chromatography Method; ISO 15302:2017; ISO: Geneva, Switzerland, 2017.
International Organization for Standardization (ISO). Animal and Vegetable Fats and Oils-Determination of Polycyclic Aromatic Hydrocarbons; ISO 15753:2016; ISO: Geneva, Switzerland, 2016.
International Organization for Standardization (ISO). Animal and Vegetable Fats and Oils-Determination of Polycyclic Aromatic Hydrocarbons by On-Line Donor-Acceptor Complex Chromatography and HPLC with Fluorescence Detection; ISO 22959:2009; ISO: Geneva, Switzerland, 2009.
CEN—European Committee for Standardization. Food Analysis-Determination of Benzo[a]Pyrene, Benz[a]Anthracene, Chrysene and Benzo[b]Fluoranthene in Foodstuffs by Gas Chromatography Mass Spectrometry (GC-MS); EN 16619:2015; CEN: Brussels, Belgium, 2015.
CEN—European Committee for Standardization. Food Analysis-Determination of Benzo[a]Pyrene, Benz[a]Anthracene, Chrysene and Benzo[b]Fluoranthene in Foodstuffs by High Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD); CEN/TS 16621:2014; CEN: Brussels, Belgium, 2014.
Costopoulou, D.; Vassiliadou, I.; Chrysafidis, D.; Bergele, K.; Tzavara, E.; Tzamtzis, V.; Leondiadis, L. Determination of PCDD/F, dioxin-like PCB and PAH levels in olive and olive oil samples from areas affected by the fires in summer 2007 in Greece. Chemosphere 2010, 79, 285–291. [CrossRef] [PubMed]
Hollosi, L.; Wenzl, T. Development and optimisation of a dopant assisted liquid chromatographic-atmospheric pressure photo ionisation-tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils. J. Chromatogr. A 2011, 1218, 23–31. [CrossRef]
Dost, K.; Deli, C. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV-Vis detection. Food Chem. 2012, 133, 193–199. [CrossRef]
Payanan, T.; Leepipatpiboon, N.; Varanusupakul, P. Lowerature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection. Food Chem. 2013, 141, 2720–2726. [CrossRef]
Ne deral, S.; Pukec, D.; Škevin, D.; Kraljić, K.; Obranović, M.; Zrinjan, P. On-line DACC-HPLC analysis of polycyclic aromatic hydrocarbons in edible oils. Hrvat. Časopis Za Prehrambenu Tehnol. Biotehnol. i Nutr. 2013, 8, 74–81.
Yu, Y.; Jin, Q.; Wang, X.G. Rapid assay of polycyclic aromatic hydrocarbons in edible oils by HPLC with FLD detection without clean-up. J. Chem. Pharm. Res. 2013, 5, 409–414.
Zhao, W.J.; Chen, X.B.; Fang, L.; Li, C.L.; Zhao, D.Y. Determination of light-medium-heavy polycyclic aromatic hydrocarbons in vegetable oils by solid-phase extraction and high-performance liquid chromatography with diode array and fluorescence detection. J. Agric. Food Chem. 2013, 61, 1804–1809. [CrossRef] [PubMed]
Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Olive and Refined Pomace Olive Oils with Modified Low Temperature and Ultrasound-Assisted Liquid–Liquid Extraction Method Followed by the HPLC/FLD. Food Anal. Methods 2015, 9, 1220–1227. [CrossRef]
Akdoğan, A.; Buttinger, G.; Wenzl, T. Single-laboratory validation of a saponification method for the determination of four polycyclic aromatic hydrocarbons in edible oils by HPLC-fluorescence detection. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2016, 33, 215–224. [CrossRef]
Wang, J.; Jia, L.; Wei, W.; Lang, S.; Shao, P.; Fan, X. Determination of polycyclic aromatic hydrocarbons in edible oil by gel permeation chromatography and ultra-high performance liquid chromatography coupled with diode array detector and fluorescence detector. Acta Chromatogr. 2016, 28, 415–427. [CrossRef]
Ji, W.; Zhang, M.; Duan, W.; Wang, X.; Zhao, H.; Guo, L. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils. Food Chem. 2017, 235, 104–110. [CrossRef]
Zhao, Q.; Wei, F.; Luo, Y.B.; Ding, J.; Xiao, N.; Feng, Y.Q. Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils. J. Agric. Food Chem. 2011, 59, 12794–12800. [CrossRef]
Wu, S.; Yu, W. Liquid-liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chem. 2012, 134, 597–601. [CrossRef]
Cassimiro Belo, R.F.; Nunes, C.M.; Vieira Dos Santos, E.; Augusti, D.V.; Pissinatti, R. Single laboratory validation of a SPE method for the determination of PAHs in edible oils by GC-MS. Anal. Methods 2012, 4, 4068–4076. [CrossRef]
Purcaro, G.; Picardo, M.; Barp, L.; Moret, S.; Conte, L.S. Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil. J. Chromatogr. A 2013, 1307, 166–171. [CrossRef] [PubMed]
Pschenitza, M.; Hackenberg, R.; Niessner, R.; Knopp, D. Analysis of benzo[a]pyrene in vegetable oils using molecularly imprinted solid phase extraction (MISPE) coupled with enzyme-linked immunosorbent assay (ELISA). Sensors 2014, 14, 9720– 9737. [CrossRef] [PubMed]
Zheng, H.B.; Ding, J.; Zheng, S.J.; Zhu, G.T.; Yuan, B.F.; Feng, Y.Q. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta 2015, 148, 46–53. [CrossRef]
Chung, S.W.C.; Lau, J.S.Y. Single laboratory validation of an environmentally friendly single extraction and cleanup method for quantitative determination of four priority polycyclic aromatic hydrocarbons in edible oils and fats. Anal. Methods 2015, 7, 7631–7638. [CrossRef]
Zhou, R.Z.; Jiang, J.; Mao, T.; Zhao, Y.S.; Lu, Y. Multiresidue analysis of environmental pollutants in edible vegetable oils by gas chromatography-tandem mass spectrometry. Food Chem. 2016, 207, 43–50. [CrossRef]
Shi, L.K.; Zhang, D.D.; Liu, Y.L. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2016, 33, 603–611. [CrossRef]
Zhang, Y.; Zhou, H.; Zhang, Z.H.; Wu, X.L.; Chen, W.G.; Zhu, Y.; Fang, C.F.; Zhao, Y.G. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J. Chromatogr. A 2017, 1489, 29–38. [CrossRef]
Mohammadi, A.; Malek-Mohammadi Jahani, S.; Kamankesh, M.; Jazaeri, S.; Eivani, M.; Esmaeili, S.; Abdi, S. Determination of Polycyclic Aromatic Hydrocarbons in Edible Oil Using Fast and Sensitive Microwave-assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry. Polycycl. Aromat. Compd. 2020, 40, 705–713. [CrossRef]
Grimmer, G.; Bohke, H. Polycyclic Aromatic Hydrocarbon Profile Analysis of High-Protein Foods, Oils, and Fats by Gas Chromatography. J. AOAC 1975, 58, 725–733. [CrossRef]
Hu, B.; He, M.; Chen, B. Magnetic nanoparticle sorbents. In Solid-Phase Extraction; Poole, C., Ed.; Elsevier Inc.: New York, NY, USA, 2020; pp. 235–284. ISBN 9780128169063.
Purcaro, G.; Morrison, P.; Moret, S.; Conte, L.S.; Marriott, P.J. Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2007, 1161, 284–291. [CrossRef] [PubMed]
Purcaro, G.; Moret, S.; Conte, L.S. Rapid validated method for the analysis of benzo[a]pyrene in vegetable oils by using solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1176, 231–235. [CrossRef] [PubMed]
Zhang, Q.; Liu, P.; Li, S.; Zhang, X.; Chen, M. Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs). J. Liq. Chromatogr. Relat. Technol. 2020, 43, 425–444. [CrossRef]
Gómez-Ruiz, J.Á.; Cordeiro, F.; López, P.; Wenzl, T. Optimisation and validation of programmed temperature vaporization (PTV) injection in solvent vent mode for the analysis of the 15 + 1 EU-priority PAHs by GC-MS. Talanta 2009, 80, 643–650. [CrossRef] [PubMed]
Poster, D.L.; Schantz, M.M.; Sander, L.C.; Wise, S.A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods. Anal. Bioanal. Chem. 2006, 386, 859–881. [CrossRef]
Bansal, V.; Kumar, P.; Kwon, E.E.; Kim, K.H. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit. Rev. Food Sci. Nutr. 2017, 57, 3297–3312. [CrossRef]
Mechlińska, A.; Wolska, L.; Namieśnik, J.; Wolska, L. Isotope-labeled substances in analysis of persistent organic pollutants in environmental samples. TrAC Trends Anal. Chem. 2010, 29, 820–831. [CrossRef]
Vreuls, J.J.; Goudriaan, V.P.; Th, U.A.; de Jong, G.J. A trapping column for the coupling of reversed-phase liquid chromatography and capillary gas chromatography. J. High Resolut. Chromatogr. 1991, 14, 475–480. [CrossRef]
Moret, S.; Cericco, V.; Conte, L.S. On-line solvent evaporator for coupled normal phase-reversed phase high-performance liquid chromatography systems: Heavy polycyclic aromatic hydrocarbons analysis. J. Microcolumn Sep. 2001, 13, 13–18. [CrossRef]