Expression of recombinant enhanced green fluorescent protein provides insight into foreign gene-expression differences between Mut+ and MutS strains of Pichia pastoris.
Biomass; Bioreactors; Green Fluorescent Proteins/genetics; Metabolic Networks and Pathways/genetics; Methanol/metabolism; MutS DNA Mismatch-Binding Protein/genetics; Phenotype; Pichia/genetics/metabolism; Recombinant Proteins/biosynthesis/genetics; EGFP; MutS; PAOX1; Pichia pastoris
Abstract :
[en] Pichia pastoris is a very popular yeast for recombinant protein production, mainly due to the strong, methanol-inducible P(AOX1) promoter. Methanol induction however poses several drawbacks. One approach to improve processes is to use MutS strains with reduced methanol catabolic ability. Various reports claim that MutS allows higher recombinant protein production levels than Mut+ but scarcely elaborate on reasons for differences. In this study, enhanced green fluorescent protein was used as a P(AOX1) -driven reporter for the investigation of expression differences between Mut+ and MutS strains. Mut+ exhibited higher responses to methanol, with faster growth (0.07 vs. 0.01 hr(-1) ) and higher consumption of methanol (2.25 vs. 1.81 mmol/g(DCW) .hr) and oxygen (2.2 vs. 0.66 mmol/g(DCW) .hr) than MutS. Mut+ yielded more biomass than MutS (2.3 vs. 1.3 g(DCW) /L), and carbon dioxide analysis of bioreactor off-gas suggested that considerable amounts of methanol were consumed by Mut+ via the dissimilatory pathway. In contrast, it was demonstrated that the MutS population switched to an induced state more rapidly than Mut+. In addition, MutS exhibited 3.4-fold higher fluorescence levels per cell (77,509 vs. 23,783 SFU) indicative of higher recombinant protein production. The findings were verified by similar results obtained during the expression of a lipase. Based on the differences in response to methanol versus recombinant protein production, it was proposed that higher energy availability occurs in MutS for recombinant protein synthesis, contrary to Mut+ that uses the energy to maintain high levels of methanol catabolic pathways and biomass production.
Fickers, Patrick ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Language :
English
Title :
Expression of recombinant enhanced green fluorescent protein provides insight into foreign gene-expression differences between Mut+ and MutS strains of Pichia pastoris.
Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98, 5301–5317. https://doi.org/10.1007/s00253-014-5732-5
Anderson, E. M., Larsson, K. M., & Kirk, O. (1998). One biocatalyst–many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatalysis and Biotransformation, 16, 181–204. https://doi.org/10.3109/10242429809003198
Ascacio-Martínez, J. A., & Barrera-Saldaña, H. A. (2004). Production and secretion of biologically active recombinant canine growth hormone by Pichia pastoris. Gene, 340, 261–266. https://doi.org/10.1016/j.gene.2004.06.058
Berrios, J., Flores, M.-O., Díaz-Barrera, A., Altamirano, C., Martínez, I., & Cabrera, Z. (2017). A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: Temperature effect and scale-up simulation. Journal of Industrial Microbiology & Biotechnology, 44, 407–411. https://doi.org/10.1007/s10295-016-1895-7
Bredell, H., Smith, J. J., Görgens, J. F., & van Zyl, W. H. (2018). Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast, 35, 519–529. https://doi.org/10.1002/yea.3318
Broger, T., Odermatt, R. P., Huber, P., & Sonnleitner, B. (2011). Real-time on-line flow cytometry for bioprocess monitoring. Journal of Biotechnology, 154, 240–247. https://doi.org/10.1016/j.jbiotec.2011.05.003
Çalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., … Özdamar, T. H. (2015). Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochemical Engineering Journal, 95, 20–36. https://doi.org/10.1016/j.bej.2014.12.003
Carly, F., Niu, H., Delvigne, F., & Fickers, P. (2016). Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. Journal of Industrial Microbiology & Biotechnology, 43, 517–523. https://doi.org/10.1007/s10295-015-1722-6
Chiruvolu, V., Cregg, J. M., & Meagher, M. M. (1997). Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbatch fermentations. Enzyme and Microbial Technology, 21, 277–283. https://doi.org/10.1016/S0141-0229(97)00042-2
Cos, O., Serrano, A., Montesinos, J. L., Ferrer, P., Cregg, J. M., & Valero, F. (2005). Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. Journal of Biotechnology, 116, 321–335. https://doi.org/10.1016/j.jbiotec.2004.12.010
Couderc, R., & Baratti, J. (1980). Oxidation of methanol by the yeast, Pichia Pastoris. Purification and properties of the alcohol oxidase. Agricultural and Biological Chemistry, 44, 2279–2289. https://doi.org/10.1080/00021369.1980.10864320
Cregg, J. M., Tolstorukov, I., Kusari, A., Sunga, A. J., Madden, K., & Chappell, T. (2010). Expression of recombinant genes in the yeast Pichia pastoris. Current Protocols Essential Laboratory Technology, 4, 13.2.1–13.2.14. https://doi.org/10.1002/9780470089941.et1302s04
Fickers, P., Nicaud, J. M., Destain, J., & Thonart, P. (2003). Overproduction of lipase by Yarrowia lipolytica mutants. Applied Microbiology and Biotechnology, 63, 136–142. https://doi.org/10.1007/s00253-003-1342-3
Gao, M.-J., Li, Z., Yu, R.-S., Wu, J.-R., Zheng, Z.-Y., Shi, Z.-P., … Lin, C.-C. (2012). Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift. Bioprocess and Biosystems Engineering, 35, 1125–1136. https://doi.org/10.1007/s00449-012-0697-1
Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27, 153–176. https://doi.org/10.1016/j.biotechadv.2008.10.006
Gasser, B., & Mattanovich, D. (2018). A yeast for all seasons—Is Pichia pastoris a suitable chassis organism for future bioproduction? FEMS Microbiology Letters, 365. https://doi.org/10.1093/femsle/fny181, fny181.
Gasser, B., Prielhofer, R., Marx, H., Maurer, M., Nocon, J., Steiger, M., … Mattanovich, D. (2013). Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiology, 8, 191–208. https://doi.org/10.2217/fmb.12.133
Heiss, S., Puxbaum, V., Gruber, C., Altmann, F., Mattanovich, D., & Gasser, B. (2015). Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology, 161, 1356–1368. https://doi.org/10.1099/mic.0.000105
Jahic, M., Wallberg, F., Bollok, M., Garcia, P., & Enfors, S.-O. (2003). Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microbial Cell Factories, 2, 6. https://doi.org/10.1186/1475-2859-2-6
Khatri, N. K., & Hoffmann, F. (2006). Oxygen-limited control of methanol uptake for improved production of a single-chain antibody fragment with recombinant Pichia pastoris. Applied Microbiology and Biotechnology, 72, 492–498. https://doi.org/10.1007/s00253-005-0306-1
Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11, 22. https://doi.org/10.1186/1475-2859-11-22
Kundys, A., Białecka-Florjańczyk, E., Fabiszewska, A., & Małajowicz, J. (2018). Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. Journal of Polymers and the Environment, 26, 396–407. https://doi.org/10.1007/s10924-017-0945-1
Kupcsulik, B., & Sevella, B. (2004). Effect of methanol concentration on the recombinant Pichia pastoris MUTS fermentation. Periodica Polytechnica, Chemical Engineering, 48, 73–87. https://doi.org/N/A
Lee, S., Lim, W. A., & Thorn, K. S. (2013). Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS ONE, 8, e67902. https://doi.org/10.1371/journal.pone.0067902
Lin-Cereghino, J., Wong, W. W., Xiong, S., Giang, W., Luong, L. T., Vu, J., … Lin-Cereghino, G. P. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38, 44–48. https://doi.org/10.2144/05381BM04
Näätsaari, L., Mistlberger, B., Ruth, C., Hajek, T., Hartner, F. S., & Glieder, A. (2012). Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0039720
Niu, H., Jost, L., Pirlot, N., Sassi, H., Daukandt, M., Rodriguez, C., & Fickers, P. (2013). A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microbial Cell Factories, 12, 33. https://doi.org/10.1186/1475-2859-12-33
Obst, U., Lu, T. K., & Sieber, V. (2017). A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synthetic Biology, 6, 1016–1025. https://doi.org/10.1021/acssynbio.6b00337
Ohsawa, S., Yurimoto, H., & Sakai, Y. (2017). Novel function of Wsc proteins as a methanol-sensing machinery in the yeast Pichia pastoris. Molecular Microbiology, 104, 349–363. https://doi.org/10.1111/mmi.13631
Orman, M. A., Çalık, P., & Özdamar, T. H. (2009). The influence of carbon sources on recombinant-human-growth-hormone production by Pichia pastoris is dependent on phenotype: A comparison of Muts and Mut+ strains. Biotechnology and Applied Biochemistry, 52, 245–255. https://doi.org/10.1042/BA20080057
Pla, I. A., Damasceno, L. M., Vannelli, T., Ritter, G., Batt, C. A., & Shuler, M. L. (2006). Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnology Progress, 22, 881–888. https://doi.org/10.1021/bp060012+
Puxbaum, V., Gasser, B., & Mattanovich, D. (2016). The bud tip is the cellular hot spot of protein secretion in yeasts. Applied Microbiology and Biotechnology, 100, 8159–8168. https://doi.org/10.1007/s00253-016-7674-6
Raschmanová, H., Paulová, L., Branská, B., Knejzlík, Z., Melzoch, K., & Kovar, K. (2018). Production and cleavage of a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. Folia Microbiologia (Praha), 63, 773–787. https://doi.org/10.1007/s12223-018-0619-y
Rußmayer, H., Buchetics, M., Gruber, C., Valli, M., Grillitsch, K., Modarres, G., … Gasser, B. (2015). Systems-level organization of yeast methylotrophic lifestyle. BMC Biology, 13, 80. https://doi.org/10.1186/s12915-015-0186-5
Samantaray, S., Neubauer, M., Helmschrott, C., & Wagener, J. (2013). Role of the guanine nucleotide exchange factor Rom2 in cell wall integrity maintenance of Aspergillus fumigatus. Eukaryotic Cell, 12, 288–298. https://doi.org/10.1128/EC.00246-12
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.
Shen, W., Kong, C., Xue, Y., Liu, Y., Cai, M., Zhang, Y., … Zhou, M. (2016). Kinase screening in Pichia pastoris identified promising targets involved in cell growth and alcohol oxidase 1 promoter (PAOX1) regulation. PLoS ONE, 11, e0167766. https://doi.org/10.1371/journal.pone.0167766
Shen, W., Xue, Y., Liu, Y., Kong, C., Wang, X., Huang, M., … Zhou, M. (2016). A novel methanol-free Pichia pastoris system for recombinant protein expression. Microbial Cell Factories, 15. https://doi.org/10.1186/s12934-016-0578-4
Sinha, J., Plantz, B. A., Zhang, W., Gouthro, M., Schlegel, V., Liu, C.-P., & Meagher, M. M. (2003). Improved production of recombinant ovine interferon-τ by Mut+ strain of Pichia pastoris using an optimized methanol feed profile. Biotechnology Progress, 19, 794–802. https://doi.org/10.1021/bp025744q
Takeya, T., Yurimoto, H., & Sakai, Y. (2018). A Pichia pastoris single-cell biosensor for detection of enzymatically produced methanol. Applied Microbiology and Biotechnology, 102, 7017–7027. https://doi.org/10.1007/s00253-018-9144-9
van der Klei, I. J., Yurimoto, H., Sakai, Y., & Veenhuis, M. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research. Peroxisomes: Morphology, Function, Biogenesis and Disorders, 1763, 1453–1462. https://doi.org/10.1016/j.bbamcr.2006.07.016
Vanz, A., Lünsdorf, H., Adnan, A., Nimtz, M., Gurramkonda, C., Khanna, N., & Rinas, U. (2012). Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes. Microbial Cell Factories, 11, 103. https://doi.org/10.1186/1475-2859-11-103
Vogl, T., & Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol., Special Issue: 15th European Congress on Biotechnology (ECB15), Istanbul, 23-26th September 2012 30, 385–404. https://doi.org/10.1016/j.nbt.2012.11.010
Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., … Cai, M. (2017). Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Scientific Reports, 7. https://doi.org/10.1038/srep41850, 41850.
Wang, X., Cai, M., Shi, L., Wang, Q., Zhu, J., Wang, J., … Zhang, Y. (2016). PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnology Letters, 38, 291–298. https://doi.org/10.1007/s10529-015-1972-4
Wang, X., Wang, Q., Wang, J., Bai, P., Shi, L., Shen, W., … Cai, M. (2016). Mit1 transcription factor mediates methanol signaling and regulates alcohol oxidase 1 promoter in Pichia pastoris. The Journal of Biological Chemistry Jbc, M115, 692053. https://doi.org/10.1074/jbc.M115.692053
Zahrl, R. J., Mattanovich, D., & Gasser, B. (2018). The impact of ERAD on recombinant protein secretion in Pichia pastoris (syn Komagataella spp.). Microbiology, 164, 453–463. https://doi.org/10.1099/mic.0.000630
Zhan, C., Wang, S., Sun, Y., Dai, X., Liu, X., Harvey, L., … Bai, Z. (2016). The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Research, 16, fow033. https://doi.org/10.1093/femsyr/fow033
Zhang, W., Hywood Potter, K. J., Plantz, B. A., Schlegel, V. L., Smith, L. A., & Meagher, M. M. (2003). Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: Growth kinetics and production improvement. Journal of Industrial Microbiology & Biotechnology, 30, 210–215. https://doi.org/10.1007/s10295-003-0035-3