A. Abghari., S. Chen Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts Front. Energy Res. 2 2014 21.
Agrocycle, (2018). A blueprint and EU policy-forming protocol for the recycling and valorisation of agri-food waste. < http://www.agrocycle.eu/> (accessed 06.09.18).
J. Akhtar., A. Idris., R. Abd Aziz Recent advances in production of succinic acid from lignocellulosic biomass Appl. Microbiol. Biotechnol. 98 2014 987-1000.
H. Almqvist., C. Pateraki., M. Alexandri., A. Koutinas., G. Lidén Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars J. Ind. Microbiol. Biotechnol. 43 8 2016 1117-1130.
A.V. Alves., E.J. Sanjinez-Argandoña., A.M. Linzmeier., C.A.L. Cardoso., M.L.R. Macedo Food value of mealworm grown on acrocomia aculeata pulp flour PLOS ONE 11 3 2016 e0151275.
C. Andersson., D. Hodge., K.A. Berglund., U. Rova Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli Biotechnol. Prog. 23 2 2007 381-388.
G. Barth., C. Gaillardin Physiology and genetics of the dimorphic fungus Yarrowia lipolytica FEMS Microbiol. Rev. 19 4 1997 219-237.
A. Caligiani., A. Marseglia., G. Leni., S. Baldassarre., L. Maistrello., A. Dossena., et al. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin Food Res. Int. 105 2018 812-820.
J. Chen Aquatic feed industry under tension in world and China’s grain supply and demand China Fish. 6 2012 32-34.
J.Y.K. Cheng., I.M. Lo Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong Environ. Sci. Pollut. Res. 23 8 2016 7169-7177.
K.-K. Cheng., G.-Y. Wang., J. Zeng., J.-A. Zhang Improved succinate production by metabolic engineering BioMed. Res. Int. 2013 2013 12.
K.-K. Cheng., X.-B. Zhao., J. Zeng., R.-C. Wu., Y.-Z. Xu., D.-H. Liu., et al. Downstream processing of biotechnological produced succinic acid Appl. Microbiol. Biotechnol. 95 4 2012 841-850.
D. Cimini., O. Argenzio., S. D’Ambrosio., L. Lama., I. Finore., R. Finamore., et al. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate Bioresour. Technol. 222 2016 355-360.
M. Coelho., P. Amaral., I. Belo Yarrowia lipolytica: an industrial workhorse Curr. Res., Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2 2010 930-940.
B. Cok., I. Tsiropoulos., A.L. Roes., M.K. Patel Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy Biofuels, Bioprod. Bioref. 8 1 2014 16-29.
Z. Cui., C. Gao., J. Li., J. Hou., C.S.K. Lin., Q. Qi Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH Metab. Eng. 42 2017 126-133.
W. Dessie., W. Zhang., F. Xin., W. Dong., M. Zhang., J. Ma., et al. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation Bioresour. Technol. 247 2018 1177-1180.
B. Dujon., D. Sherman., G. Fischer., P. Durrens., S. Casaregola., I. Lafontaine., et al. Genome evolution in yeasts Nature 430 2004 35.
FAO, (2011). Global food losses and food waste: extent, causes and prevention, SaveFood! Rome. < https://doi.org/10.1098/rstb.2010.0126> (accessed 23.08.18).
P. Fickers., M.T. Le Dall., C. Gaillardin., P. Thonart., J.M. Nicaud New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica J. Microbiol. Methods 55 3 2003 727-737.
P. Fickers., Y. Waché., A. Marty., S. Mauersberger., M.S. Smit., P.-H. Benetti., et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications FEMS Yeast Res. 5 6-7 2005 527-543.
C. Gao., X. Yang., H. Wang., C.P. Rivero., C. Li., Z. Cui., et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica Biotechnol. Biofuels 9 1 2016 179.
F.A.G. Gonçalves., G. Colen., J.A. Takahashi Yarrowia lipolytica and its multiple applications in the biotechnological industry Sci. World J. 2014 2014 14.
M.C. Gortari., R.A. Hours Biotechnological processes for chitin recovery out of crustacean waste: a mini-review Electron. J. Biotechnol. 16 3 2013.
Grand View Research, (2018). U.S. fruit & vegetables market size, share & trends analysis report, by product type (fresh, dried, and frozen), and distribution channel type, competitive landscape, and segment forecasts, 2018-2025. < https://www.grandviewresearch.com/industry-analysis/us-fruit-vegetables-market> (accessed 7.03.18).
M. Groenewald., T. Boekhout., C. Neuvéglise., C. Gaillardin., P.W.M. van Dijck., M. Wyss Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential Crit. Rev. Microbiol. 40 3 2014 187-206.
IPIFF, (2019). Guide on good hygiene practices for European Union (EU) producers of insects as food and feed. < http://ipiff.org/wp-content/uploads/2019/03/IPIFF_Guide_A4_2019-v5-separate.pdf> (accessed 30.03.19).
M. Jahid., A. Gupta., D.K. Sharma Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions J. Bioprocess. Biotechn. 8 3 2018 1-11.
M. Jiang., J. Ma., M. Wu., R. Liu., L. Liang., F. Xin., et al. Progress of succinic acid production from renewable resources: metabolic and fermentative strategies Bioresour. Technol. 245 2017 1710-1717.
E.A. Johnson., C. Echavarri-Erasun Chapter 3-yeast biotechnology C.P. Kurtzman., J.W. Fell. T. Boekhout The Yeasts (fifth ed.) 2011 Elsevier London 21-44.
G. Kaur., K. Uisan., K.L. Ong., C.S.K. Lin Recent trends in green and sustainable chemistry & waste valorisation: rethinking plastics in a circular economy Curr. Opin. Green. Sustain. Chem. 9 2018 30-39.
J. Krishnakumar., C.M. Drapcho., P.N. Nghiem Biological production of succinic acid using cull peach medium: effects of corn steep liquor supplement and hydrogen sparging Biol. Eng. Trans. 6 4 2014 189-202.
G. Laufenberg., B. Kunz., M. Nystroem Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations Bioresour. Technol. 87 2 2003 167-198.
R. Ledesma-Amaro., Z. Lazar., M. Rakicka., Z. Guo., F. Fouchard., A.-M.C.-L. Coq., et al. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose Metab. Eng. 38 2016 115-124.
P. Lee., S. Lee., S. Hong., H. Chang Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen Appl. Microbiol. Biotechnol. 58 5 2002 663-668.
P.C. Lee., W.G. Lee., S.Y. Lee., H.N. Chang Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source Biotechnol. Bioeng. 72 1 2001 41-48.
Leong, S.Y., Kutty, S.R.M., Malakahmad, A., Tan, C.K. (2016). Feasibility study of biodiesel production using lipids of Hermetia illucens larva fed with organic waste. Waste Manag., 47, 84-90.
Li, C. (2018c). Biorefinery development for efficient and green succinic acid production using engineered Yarrowia lipolytica (Doctoral dissertation). < https://scholars.cityu.edu.hk/en/theses/biorefinery-development-for-efficient-and-green-succinic-acid-production-using-engineered-yarrowia-lipolytica(ad17d6c3-de8f-43ac-94f0-ad42774dbf4d).html> (accessed 17.02.19).
Q. Li., J.A. Siles., I.P. Thompson Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85 Appl. Microbiol. Biotechnol. 88 3 2010 671-678.
C. Li., X. Yang., S. Gao., A.H. Chuh., C.S.K. Lin Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica J. Clean. Prod. 179 2018 151-159.
C. Li., S. Gao., X. Yang., C.S.K. Lin Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in-situ fibrous bed bioreactor Bioresour. Technol. 249 2018 612-619.
V. Liakou., C. Pateraki., A.-M. Palaiogeorgou., N. Kopsahelis., A. Machado de Castro., D.M. Guimarães Freire., et al. Valorisation of fruit and vegetable waste from open markets for the production of 2, 3-butanediol Food Bioprod. Process. 108 2018 27-36.
L. Luo., E. van der Voet., G. Huppes Biorefining of lignocellulosic feedstock-technical, economic and environmental considerations Bioresour. Technol. 101 13 2010 5023-5032.
C. Madzak., C. Gaillardin., J.-M. Beckerich Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review J. Biotechnol. 109 1 2004 63-81.
H.P.S. Makkar., G. Tran., V. Heuzé., P. Ankers State-of-the-art on use of insects as animal feed Anim. Feed. Sci. Technol. 197 2014 1-33.
F. Manzano-Agugliaro., M.J. Sanchez-Muros., F.G. Barroso., A. Martínez-Sánchez., S. Rojo., C. Pérez-Bañón Insects for biodiesel production Renew. Sustain. Energy Rev. 16 6 2012 3744-3753.
MarketsandMarkets, (2016). Succinic acid market by type (bio-based, petro-based), application (polyurethane, resins, coatings & pigments, pharmaceuticals, plasticizers, food & beverage, PBS/PBST, solvents & lubricants, de-Icer solutions, personal care, and others), and by region-global forecast to 2021. < https://www.marketsandmarkets.com/Market-Reports/succinic-acid-market-402.html> (accessed 23.08.18).
MarketsandMarkets, (2019). Succinic acid market by type (bio-based succinic acid, petro-based succinic acid), end-use industry (industrial, food & beverage, coatings, pharmaceutical), and region (APAC, European, North America, South America, Middle East & Africa)-forecast to 2023. < https://www.marketsandmarkets.com/Market-Reports/succinic-acid-market-402.html> (accessed 30.03.19).
Moates, G., Sweet, N., Bygrave, K., Waldron, K. (2016). Top 20 food waste streams. REFRESH project deliverable 6.9. WRAP/IFR. (accesed 13.08.18).
P. Mudaliyar., L. Sharma., C. Kulkarni Food waste management- lactic acid production by Lactobacillus species Int. J. Adv. Biol. Res. 2 1 2012 34-38.
N. Nghiem., S. Kleff., S. Schwegmann Succinic acid: Technology development and commercialization Fermentation 3 2 2017 26.
NoAW, (2018). What is NoAW about? < http://noaw2020.eu/> (accessed 23.08.18).
K.L. Ong., G. Kaur., N. Pensupa., K. Uisan., C.S.K. Lin Trends in food waste valorization for the production of chemicals, materials and fuels: case study South and Southeast Asia Bioresour. Technol. 248 2018 100-112.
K.L. Ong., B.W. Tan., S.L. Liew Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin Int. Food Res. J. 21 3 2014 953-958.
A. Orjuela., A. Orjuela., C.T. Lira., D.J. Miller A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis Bioresour. Technol. 139 2013 235-241.
S.K. Panda., S.S. Mishra., E. Kayitesi., R.C. Ray Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes Environ. Res. 146 2016 161-172.
S. Papanikolaou., I. Chevalot., M. Komaitis., I. Marc., G. Aggelis Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures Appl. Microbiol. Biotechnol. 58 3 2002 308-312.
M. Patsalou., K.K. Menikea., E. Makri., M.I. Vasquez., C. Drouza., M. Koutinas Development of a citrus peel-based biorefinery strategy for the production of succinic acid J. Clean. Prod. 166 2017 706-716.
D. Pereira de Andrade., B.F. Carvalho., R.F. Schwan., D.R. Dias Production of γ-decalactone by yeast strains under different conditions Food Technol. Biotechnol. 55 2 2017 225-230.
S.D. Porter., D.S. Reay., P. Higgins., E. Bomberg A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain Sci. Total. Environ. 571 2016 721-729.
A. Razaghi., O.P. Karthikeyan., H.T.N. Hao., K. Heimann Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors Bioresour. Technol. 217 2016 100-103.
RERESH & Ecologic Institute, (2018). REFRESH: resource efficient food and drink for the entire supply chain. < https://eu-refresh.org> (accessed 6.09.18).
H. Song., S.Y. Lee Production of succinic acid by bacterial fermentation Enzyme Microb. Technol. 39 3 2006 352-361.
H.-T. Song., Y.-M. Yang., D.-k Liu., X.-Q. Xu., W.-J. Xiao., Z.-L. Liu., et al. Construction of recombinant Yarrowia lipolytica and its application in bio-transformation of lignocellulose Bioengineered 8 5 2017 624-629.
A. Stamer Insect proteins-a new source for animal feed EMBO Rep. 16 6 2015 676.
Statista, (2018a). Global fresh vegetable production in 2016, by region (in million metric tons). < https://www.statista.com/statistics/264066/global-vegegable-production-by-region/> (accessed 13.08.18).
Statista, (2018b). Global production of fresh fruit from 1990 to 2016 (in 1, 000 metric tons). < https://www.statista.com/statistics/262266/global-production-of-fresh-fruit/> (accessed 13.08.2018).
Z. Sun., M. Li., Q. Qi., C. Gao., C.S.K. Lin Mixed food waste as renewable feedstock in succinic acid fermentation Appl. Biochem. Biotechnol. 174 5 2014 1822-1833.
The World Bank, (2013). Fish to 2030 prospects for fisheries and aquaculture. World Bank Report Number 83177-GLB. < http://www.fao.org/docrep/019/i3640e/i3640e.pdf> (accessed 17.02.19).
L. Tretter., A. Patocs., C. Chinopoulos Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis Biochim. Biophys. Acta (BBA)-Bioenerg. 1857 8 2016 1086-1101.
M. Vandermies., T. Kar., F. Carly., J.-M. Nicaud., F. Delvigne., P. Fickers Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor Appl. Microbiol. Biotechnol. 102 13 2018 5473-5482.
A. Van Huis., J. Van Itterbeeck., H. Klunder., E. Mertens., A. Halloran., G. Muir., et al. Edible Insects: Future Prospects for Food and Feed Security 2013 Food and Agriculture Organization of the United Nations http://www.fao.org/3/i3253e/i3253e00.htm (accessed 30.06.19).
Z. Vaseghi., G.D. Najafpour., S. Mohseni., S. Mahjoub Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor Int. J. Food Sci. Technol. 48 2 2013 283-289.
Veldkamp, T., Van Duinkerken, G., Van Huis, A., Lakemond, C.M.M., Ottevanger, E., Bosch, G., et al. (2012). Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study. < https://www.wur.nl/upload_mm/2/8/0/f26765b9-98b2-49a7-ae43-5251c5b694f6_234247%5B1%5D> (accessed 3.06.19).
Wadhwa, M., Bakshi, M.P.S. (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products. < http://www.fao.org/3/i3273e/i3273e00.htm> (accessed 3.06.19).
H. Wang., Ku Rehman., X. Liu., Q. Yang., L. Zheng., W. Li., et al. Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein Biotechnol. Biofuels 10 1 2017 304.
M. Workman., P. Holt., J. Thykaer Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations AMB. Express 3 1 2013 58.
J. Yan., B. Han., X. Gui., G. Wang., L. Xu., Y. Yan., et al. Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed Sci. Rep. 8 1 2018 758.
D. Yan., C. Wang., J. Zhou., Y. Liu., M. Yang., J. Xing Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value Bioresour. Technol. 156 2014 232-239.
X. Yang., H. Wang., C. Li., C.S.K. Lin Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy J. Agric. Food Chem. 65 20 2017 4133-4139.
Q. Yu., Z. Cui., Y. Zheng., H. Huo., L. Meng., J. Xu., et al. Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH Biochem. Eng. J. 139 2018 51-56.
J.-H. Yu., L.-W. Zhu., S.-T. Xia., H.-M. Li., Y.-L. Tang., X.-H. Liang., et al. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering Biotechnol. Bioeng. 113 7 2016 1531-1541.
T.V. Yuzbashev., E.Y. Yuzbasheva., T.I. Sobolevskaya., I.A. Laptev., T.V. Vybornaya., A.S. Larina., et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica Biotechnol. Bioeng. 107 4 2010 673-682.
F. Zhang., J. Li., H. Liu., Q. Liang., Q. Qi ATP-based ratio regulation of glucose and xylose improved succinate production PLOS ONE 11 6 2016 e0157775.
M.-X. Zhao., Z. Chi., Z.-M. Chi., C. Madzak The simultaneous production of single-cell protein and a recombinant antibacterial peptide by expression of an antibacterial peptide gene in Yarrowia lipolytica Process. Biochem. 48 2 2013 212-217.
L. Zheng., Y. Hou., W. Li., S. Yang., Q. Li., Z. Yu Exploring the potential of grease from yellow mealworm beetle (Tenebrio molitor) as a novel biodiesel feedstock Appl. Energy 101 2013 618-621.
J. Zhou., X. Yin., C. Madzak., G. Du., J. Chen Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism J. Biotechnol. 161 3 2012 257-264.
Q. Zhu., E.N. Jackson Metabolic engineering of Yarrowia lipolytica for industrial applications Curr. Opin. Biotechnol. 36 2015 65-72.
F.-X. Zhu., W.-P. Wang., C.-L. Hong., M.-G. Feng., Z.-Y. Xue., X.-Y. Chen., et al. Rapid production of maggots as feed supplement and organic fertilizer by the two-stage composting of pig manure Bioresour. Technol. 116 2012 485-491.