Canales, C., Altamirano, C., & Berrios, J. (2018). The growth of Pichia pastoris Mut+ on methanol–glycerol mixtures fits to interactive dual-limited kinetics: Model development and application to optimised fed-batch operation for heterologous protein production. Bioprocess and Biosystems Engineering., 41, 1827–1838. https://doi.org/10.1007/s00449-018-2005-1
Carly, F., Niu, H., Delvigne, F., & Fickers, P. (2016). Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate. Journal of Industrial Microbiology and Biotechnology, 43(4), 517–523. https://doi.org/10.1007/s10295-015-1722-6
Celinska, E., Borkowska, M., & Białas, W. (2017). Enhanced production of insect raw-starch-digesting alpha-amylase accompanied by high erythritol synthesis in recombinant Yarrowia lipolytica fed-batch cultures at high-cell-densities. Process Biochemistry, 52, 78–85. https://doi.org/10.1016/j.procbio.2016.10.022
Cha, H. J., Dalal, N. N., & Bentley, W. E. (2005). Secretion of human interleukin-2 fused with green fluorescent protein in recombinant Pichia pastoris. Applied Biochemistry and Biotechnology, 126(1), 1–11. https://doi.org/10.1007/s12010-005-0001-9
Clare, J. J., Romanes, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., … Henwood, C. A. (1991). Production of mouse epidermal growth factor in yeast: High-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 105(2), 205–212. https://doi.org/10.1016/0378-1119(91)90152-2
Cregg, J. M., Tolstorukov, I., Kusari, A., Sunga, A. J., Madden, K., & Chappell, T. (2010). Expression of recombinant genes in the yeast Pichia pastoris. Current Protocols Essential Laboratory Techniques, 4, 13.2.1–13.2.14. https://doi.org/10.1002/9780470089941.et1302s04
Fickers, P., Nicaud, J. M., Destain, J., & Thonart, P. (2003). Overproduction of lipase by Yarrowia lipolytica mutants. Applied Microbiology and Biotechnology, 63(2), 136–142. https://doi.org/10.1007/s00253-003-1342-3
Fickers, P., Nicaud, J. M., Gaillardin, C., Destain, J., & Thonart, P. (2004). Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. Journal of Applied Microbiology, 96, 742–749.
Gasser, B., & Mattanovich, D. (2018). A yeast for all seasons—Is Pichia pastoris a suitable chassis organism for future bioproduction? FEMS Microbiology Letters, 365(17), 1–4. https://doi.org/10.1093/femsle/fny181
Jungo, C., Marison, I., & von Stockar, U. (2007). Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology, 130(3), 236–246. https://doi.org/10.1016/j.jbiotec.2007.04.004
Kaushik, N., Rohila, D., Arora, U., Raut, R., Lamminmäki, U., & Khanna, N. (2016). Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnology, 16, 1–9. https://doi.org/10.1186/s12896-016-0243-3.
Li, G. Y., Fu, M., Qin, M., & Xue, L. M. (2017). High expression of human cathepsin S by recombinant Pichia pastoris with cod skin as an organic co-nitrogen source. Journal of Molecular. Microbiology and Biotechnology, 27, 363–370. https://doi.org/10.1159/000486395
Lin-Cereghino, J., Wong, W. W., Xiong, S., Giang, W., Luong, L. T., Vu, J., … Lin-Cereghino, G. P. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38(1), 44–48. https://doi.org/10.2144/05381BM04
Mueller, J. H., & Johnson, E. R. (1941). Acid hydrolysates of casein to replace peptone in the preparation of bacteriological media. Journal of Immunology, 40(1), 33–38.
Nakamura, T., Zámocký, M., Zdráhal, Z., Chaloupková, R., Monincová, M., Prokop, Z., … Damborský, J. (2006). Expression of glycosylated haloalkane dehalogenase LinB in Pichia pastoris. Protein Expression and Purification, 46(1), 85–91. https://doi.org/10.1016/j.pep.2005.08.022
Niu, H., Jost, L., Pirlot, N., Sassi, H., Daukandt, M., Rodriguez, C., & Fickers, P. (2013). A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microbial Cell Factories, 12(1), 33. https://doi.org/10.1186/1475-2859-12-33
Obst, U., Lu, T. K., & Sieber, V. (2017). A modular toolkit for generating Pichia pastoris secretion libraries. ACS Synthetic Biology, 6(6), 1016–1025. https://doi.org/10.1021/acssynbio.6b00337
Perez-Pinera, P., Han, N., Cleto, S., Cao, J., Purcell, O., Shah, K. A., … Lu, T. K. (2016). Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nature Communications, 7, 1–10. https://doi.org/10.1038/ncomms12211
Periyasamy, S., Govindappa, N., Sreenivas, S., & Sastry, K. (2013). Isolation, characterization and evaluation of the Pichia pastoris sorbitol dehydrogenase promoter for expression of heterologous proteins. Protein Expression and Purification, 92(1), 128–133. https://doi.org/10.1016/j.pep.2013.09.008
Prabhu, A. A., Mandal, B., & Dasu, V. V. (2017). Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach. Korean Journal of Chemical Engineering, 34(4), 1109–1121. https://doi.org/10.1007/s11814-016-0358-1
Rumjantsev, A. M., Bondareva, O. V., Padkina, M. V., & Sambuk, E. V. (2014). Effect of nitrogen source and inorganic phosphate concentration on methanol utilization and PEX genes expression in Pichia pastoris. The Scientific World Journal. https://doi.org/10.1155/2014/743615, 2014, –9.
Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Tom & Cold Spring Harbor Laboratory (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.
Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V., & Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34(1), 5–28. https://doi.org/10.1002/btpr.2581
Sassi, H., Delvigne, F., Kar, T., Nicaud, J. M., Crutz Le Coq, A. M., Steels, S., & Fickers, P. (2016). Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microbial Cell Factories, 15(1), 1–11. https://doi.org/10.1186/s12934-016-0558-8
Sears, I. B., O'Connor, J., Rossanese, O. W., & Glick, B. S. (1998). A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast, 14(8), 783–790. https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<783::AID-YEA272>3.0.CO;2-Y
Shen, S., Sulter, G., Jeffries, T. W., & Cregg, J. M. (1998). A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene, 216(1), 93–102. https://doi.org/10.1016/S0378-1119(98)00315-1
Shi, X., Karkut, T., Chamankhah, M., Alting-Mees, M., Hemmingsen, S. M., & Hegedus, D. (2003). Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expression and Purification, 28(2), 321–330. https://doi.org/10.1016/S1046-5928(02)00706-4
Wang, J., Nguyen, V., Glen, J., Henderson, B., Saul, A., & Miller, L. H. (2005). Improved yield of recombinant merozoite surface protein 3 (MSP3) from Pichia pastoris using chemically defined media. Biotechnology and Bioengineering, 90(7), 838–847. https://doi.org/10.1002/bit.20491