Li, C.; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Ong, K. L.; School of Energy and Environment, City University of Hong Kong, Hong Kong
Cui, Z.; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
Sang, Z.; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China, School of Life Sciences, Zhengzhou University, Zhengzhou, China
Patria, R. D.; School of Energy and Environment, City University of Hong Kong, Hong Kong
Qi, Q.; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
Fickers, Patrick ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Yan, J.; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
Lin, C. S. K.; School of Energy and Environment, City University of Hong Kong, Hong Kong
Language :
English
Title :
Promising advancement in fermentative succinic acid production by yeast hosts
Agency, N., Rice straw and wheat straw. Potential Feedstocks for the Biobased Economy June 2013, 2013 (Accessed April 18, 2020) https://english.rvo.nl/sites/default/files/2013/12/Straw%20report%20AgNL%20June%202013.pdf.
Agren, R., Otero, J.M., Nielsen, J., Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J. Ind. Microbiol. Biotechnol. 40:7 (2013), 735–747.
Ahn, J.H., Jang, Y.S., Lee, S.Y., Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 42 (2016), 54–66.
Akhtar, J., Idris, A., Aziz, R.A., Recent advances in production of succinic acid from lignocellulosic biomass. Appl. Microbiol. Biotechnol. 98:3 (2014), 987–1000.
Akhtar, T., Hashmi, A.S., Tayyab, M., Anjum, A.A., Saeed, S., Ali, S., Bioconversion of agricultural waste to butyric acid through solid state fermentation by Clostridium tyrobutyricum. Waste Biomass Valori. 11 (2018), 2067–2073.
Alcantara, J., Mondala, A., Hughey, L., Shields, S., Direct succinic acid production from minimally pretreated biomass using sequential solid-state and slurry fermentation with mixed fungal cultures. Fermentation, 3(3), 2017, 30.
Alibaba, 2019. https://www.alibaba.com/product-detail/China-market-glucose-supplier-price_60808550853.html?spm=a2700.7724857.normalList.66.4fcb33d3cGHG7t. (accessed January 24, 2019).
Babaei, M., Niaei, A., Hosseini, M., Ebrahimi, S., Angelidaki, I., Borodina, I., Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Front. Bioeng. Biotech., 7, 2019.
Baroň, M., Fiala, J., Chasing after minerality, relationship to yeasts nutritional stress and succinic acid production. Czech J. Food Sci. 30:2 (2012), 188–193.
Beauprez, J.J., De Mey, M., Soetaert, W.K., Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem. 45:7 (2010), 1103–1114.
Blankschien, M.D., Clomburg, J.M., Gonzalez, R., Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab. Eng. 12:5 (2010), 409–419.
Bondarenko, P.Y., Fedorov, A.S., Sineoky, S.P., Optimization of repeated-batch fermentation of a recombinant strain of the yeast Yarrowia lipolytica for succinic acid production at low pH. Appl. Biochem. Microbiol. 53:9 (2018), 882–887.
Bozell, J.J., Petersen, G.R., Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's “Top 10” revisited. Green Chem. 12:4 (2010), 539–554.
Bradfield, M.F.A., Mohagheghi, A., Salvachúa, D., Smith, H., Black, B.A., Dowe, N., Beckham, G.T., Nicol, W., Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol. Biofuels, 8(1), 2015, 181.
Camarasa, C., Grivet, J.P., Dequin, S., Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiol. 149:9 (2003), 2669–2678.
Chen, P., Tao, S., Zheng, P., Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour. Technol. 211 (2016), 406–413.
Cheng, H.Y., Yu, R.C., Chou, C.C., Increased acid tolerance of Escherichia coli O157: H7 as affected by acid adaptation time and conditions of acid challenge. Food Res. Int. 36:1 (2003), 49–56.
Cheng, K.K., Wang, G.Y., Zeng, J., Zhang, J.A., Improved succinate production by metabolic engineering. Biomed Res. Int., 2013, 2013.
Chidi, B.S., Bauer, F.F., Rossouw, D., The impact of changes in environmental conditions on organic acid production by commercial wine yeast strains. S. Afr. J. Enol. Vitic. 39:2 (2018), 297–304.
Choi, S., Song, C.W., Shin, J.H., Lee, S.Y., Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28 (2015), 223–239.
Ciriminna, R., Pina, C.D., Rossi, M., Pagliaro, M., Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 116:10 (2014), 1432–1439.
Cok, B., Tsiropoulos, I., Roes, A.L., Patel, M.K., Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod. Biorefin. 8:1 (2014), 16–29.
Cui, Z., Gao, C., Li, J., Hou, J., Lin, C.S.K., Qi, Q., Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab. Eng. 42 (2017), 126–133.
De Oliveira, A.P.P., Thorburn, P.J., Biggs, J.S., Lima, E., Dos Anjos, L.H.C., Pereira, M.G., Zanotti, N.É., The response of sugarcane to trash retention and nitrogen in the brazilian coastal tablelands: a simulation study. Exp. Agr. 52:1 (2016), 69–86.
Dessie, W., Zhang, W., Xin, F., Dong, W., Zhang, M., Ma, J., Jiang, M., Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour. Technol. 247 (2018), 1177–1180.
European Commission Joint Research Centre (ECJRC), EU Households Waste Over 17 Billion Kg of Fresh Fruit and Vegetables a Year. 2018 https://www.sciencedaily.com/releases/2018/08/180813120717.htm.
FAO, Global food losses and food waste: extent, causes and prevention. Save Food!, 2011, FAO, Rome, 10.1098/rstb.2010.0126 (Acessed April 18, 2020).
Franco-Duarte, R., Bessa, D., Schuller, D., Sampaio, P., Pais, C., Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Res., 17(6), 2017.
Garlapati, V.K., Shankar, U., Budhiraja, A., Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol. Rep. Amst. (Amst) 9 (2016), 9–14.
George, V., Theoretical and Experimental Study of Biobased Succinic Acid Production. Doctoral dissertation, 2017, Texas A&M University.
Girotto, F., Alibardi, L., Cossu, R., Food waste generation and industrial uses: a review. Waste Manage. 45 (2015), 32–41.
Global Fashion Agenda (GFA), Pulse of the Fashion Industry. 2017 https://www.globalfashionagenda.com/wp-content/uploads/2017/05/Pulse-of-the-Fashion-Industry_2017.pdf.
Goffeau, A., Four years of post‐genomic life with 6000 yeast genes. FEBS Lett. 480:1 (2000), 37–41.
Gunaseelan, V.N., Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour. Technol. 98:6 (2007), 1270–1277.
Hu, Y., Du, C., Leu, S.Y., Jing, H., Li, X., Lin, C.S.K., Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery. Resour. Conserv. Recycl. 129 (2018), 27–35.
Hu, Y., Du, C., Pensupa, N., Lin, C.S.K., Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf. Environ. Prot. 118 (2018), 133–142.
ICIS, US Crude Glycerine Prices Could Dip As Spring Nears. 2018 https://www.icis.com/explore/resources/news/2018/02/14/10193613/us-crude-glycerine-prices-could-dip-as-spring-nears/.
Index Mundi, Sugar Monthly price-US Dollars Per Kilogram. 2020 https://www.indexmundi.com/commodities/?commodity=sugar.
Ito, Y., Hirasawa, T., Shimizu, H., Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci. Biotechnol. Biochem. 78:1 (2014), 151–159.
Jansen, M.L., van Gulik, W.M., Towards large scale fermentative production of succinic acid. Curr. Opin. Biotechnol. 30 (2014), 190–197.
Jansen, M.L., Van De Graaf, M.J., Verwaal, R., 2016. Dicarboxylic acid production process. WO Patent WO2012038390A1.
Jantama, K., Haupt, M., Svoronos, S.A., Zhang, X., Moore, J., Shanmugam, K., Ingram, L., Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99:5 (2008), 1140–1153.
Jeihanipour, A., Taherzadeh, M.J., Ethanol production from cotton-based waste textiles. Bioresour. Technol. 100:2 (2009), 1007–1010.
Jeihanipour, A., Karimi, K., Niklasson, C., Taherzadeh, M.J., A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manage. 30:12 (2010), 2504–2509.
Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., Taherzadeh, M.J., High-rate biogas production from waste textiles using a two-stage process. Renew. Energ. 52 (2013), 128–135.
Jensen, T.Ø., Kvist, T., Mikkelsen, M.J., Christensen, P.V., Westermann, P., Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J. Ind. Microbiol. Biotechnol. 39:5 (2012), 709–717.
Jiang, M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., Zhang, W., Jia, H., Dong, W., Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour. Technol. 245:Pt B (2017), 1710–1717.
Joglekar, H., Rahman, I., Babu, S., Kulkarni, B., Joshi, A., Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol. 52:1 (2006), 1–17.
Jost, B., Holz, M., Aurich, A., Barth, G., Bley, T., Muller, R.A., The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 99:4 (2015), 1675–1686.
Kamzolova, S.V., Yusupova, A.I., Vinokurova, N.G., Finogenova, T.V., Morgunov, I.G., Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Appl. Microbiol. Biotechnol. 83:6 (2009), 1027–1034.
Kamzolova, S.V., Vinokurova, N.G., Yusupova, A.I., Morgunov, I.G., Succinic acid production from n‐alkanes. Eng. Life Sci. 12:5 (2012), 560–566.
Kamzolova, S.V., Vinokurova, N.G., Lunina, J.N., Mironov, A.A., Allayarov, R.K., Morgunov, I.G., The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl. Microbiol. Biotechnol. 98:9 (2014), 4149–4157.
Kiran, E.U., Trzcinski, A.P., Ng, W.J., Liu, Y., Bioconversion of food waste to energy: a review. Fuel. 134 (2014), 389–399.
Kubo, Y., Takagi, H., Nakamori, S., Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J. Biosci. Bioeng. 90:6 (2000), 619–624.
Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., Verma, P., Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process. Technol., 199, 2020, 106244.
Kwan, T.H., Ong, K.L., Haque, M.A., Tang, W., Kulkarni, S., Lin, C.S.K., High fructose syrup production from mixed food and beverage waste hydrolysate at laboratory and pilot scales. Food Bioprod. Process. 111 (2018), 141–152.
Letsrecycle, 2019. Prices in Textiles. https://www.letsrecycle.com/prices/textiles/. (accessed January 16, 2020).
Leung, C.C.J., Cheung, A.S.Y., Zhang, A.Y.Z., Lam, K.F., Lin, C.S.K., Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 65 (2012), 10–15.
Li, Q., Siles, J.A., Thompson, I.P., Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl. Microbiol. Biot. 88:3 (2010), 671–678.
Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., Xing, J., Su, Z., Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresour. Technol. 101:9 (2010), 3292–3294.
Li, Y., Li, M., Zhang, X., Yang, P., Liang, Q., Qi, Q., A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresour. Technol. 149 (2013), 333–340.
Li, Q., Wu, H., Li, Z., Ye, Q., Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresour. Technol. 218 (2016), 217–223.
Li, C., Yang, X., Gao, S., Wang, H., Lin, C.S.K., High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresour. Technol. 225 (2017), 9–16.
Li, C., Gao, S., Li, X., Yang, X., Lin, C.S.K., Efficient metabolic evolution of engineered Yarrowia lipolytica for succinic acid production using a glucose-based medium in an in situ fibrous bioreactor under low-pH condition. Biotechnol. Biofuels, 11, 2018, 236.
Li, C., Gao, S., Yang, X., Lin, C.S.K., Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor. Bioresour. Technol. 249:2018 (2018), 612–619.
Li, C., Yang, X., Gao, S., Chuh, A.H., Lin, C.S.K., Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica. J. Clean. Prod. 179:2018 (2018), 151–159.
Li, X., Hu, Y., Du, C., Lin, C.S.K., Recovery of glucose and polyester from textile waste by enzymatic hydrolysis. Waste Biomass Valori. 10 (2018), 3763–3772.
Li, C., Ong, K.L., Yang, X., Lin, C.S.K., Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chem. Eng. J. 371 (2019), 804–812.
Li, X., Zhang, M., Luo, J., Zhang, S., Yang, X., Igalavithana, A.D., Ok, Y.S., Tsang, D.C.W., Lin, C.S.K., Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochem. Eng. J., 149, 2019, 107249.
Liang, S., Gliniewicz, K., Gerritsen, A.T., McDonald, A.G., Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid. Bioresour. Technol. 208 (2016), 7–12.
Lin, H., Bennett, G.N., San, K.Y., Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab. Eng. 7:5–6 (2005), 337–352.
Lin, H., Bennett, G.N., San, K.Y., Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7:2 (2005), 116–127.
Lin, H., Bennett, G.N., San, K.Y., Fed‐batch culture of a metabolically engineered Escherichia coli strain designed for high‐level succinate production and yield under aerobic conditions. Biotechnol. Bioeng. 90:6 (2005), 775–779.
Lin, H., Bennett, G.N., San, K.Y., Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol. Bioeng. 89:2 (2005), 148–156.
Litsanov, B., Brocker, M., Bott, M., Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microb. Biotechnol. 6:2 (2013), 189–195.
Liu, H.H., Ji, X.J., Huang, H., Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnol. Adv. 33:8 (2015), 1522–1546.
Maru, B., López, F., Kengen, S., Constantí, M., Medina, F., Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186 (2016), 375–384.
McCoy, M., Succinic acid maker BioAmber is bankrupt. C&EN Global Enter., 96(20), 2018 14-14.
McKinlay, J.B., Vieille, C., Zeikus, J.G., Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76:4 (2007), 727–740.
Metsoviti, M., Paraskevaidi, K., Koutinas, A., Zeng, A.P., Papanikolaou, S., Production of 1, 3-propanediol, 2, 3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochem. 47:12 (2012), 1872–1882.
Metsoviti, M., Zeng, A.P., Koutinas, A.A., Papanikolaou, S., Enhanced 1, 3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163:4 (2013), 408–418.
Mirabella, N., Castellani, V., Sala, S., Current options for the valorization of food manufacturing waste: a review. J. Clean. Prod. 65 (2014), 28–41.
Mordor Intelligence, Bio-Based Succinic Acid Market - Growth, Trends, and Forecast (2020- 2025)., 2018 (Accessed April 18, 2020) https://www.mordorintelligence.com/industry-reports/global-bio-based-succinic-acid-market-industry.
Mordor Intelligence, Maleic Anhydride Market-segmented by Type, End-user Industry, and Geography - Growth, Trends, and Forecast. 2018, 2019–2024 (Accessed January 20, 2019) https://www.mordorintelligence.com/.
Nawirska, A., Kwaśniewska, M., Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 91:2 (2005), 221–225.
Nghiem, N.P., Kleff, S., Schwegmann, S., Succinic acid: technology development and commercialization. Fermentation., 3(2), 2017, 26.
Obi, F.O., Nwakaire, J.N., Ugwuishiwu, B.O., Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 35:4 (2016), 957–964.
Okoye, P., Hameed, B., Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew. Sust. Energy Rev 53 (2016), 558–574.
Ong, K.L., Tan, B.W., Liew, S.L., Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. Int. Food Res. J., 21(3), 2014, 953.
Ong, K.L., Kaur, G., Pensupa, N., Uisan, K., Lin, C.S.K., Trends in food waste valorization for the production of chemicals, materials and fuels: case study South and Southeast Asia. Bioresour. Technol. 248 (2018), 100–112.
Ong, K.L., Li, C., Li, X., Zhang, Y., Xu, J., Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochem. Eng. J. 148:2019 (2019), 108–115.
Otero, J.M., Cimini, D., Olsson, L., Nielsen, J., Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PloS one, 8(1), 2013, e54144.
Pais, C., Franco-Duarte, R., Sampaio, P., Wildner, J., Carolas, A., Figueira, D., Ferreira, B.S., Chapter 9-production of dicarboxylic acid platform chemicals using yeasts: focus on succinic acid. Poltronieri, P., D'Urso, O.F., (eds.) Biotransformation of Agricultural Waste and By-Products, 2016, Elsevier, 237–269.
Paul, S., Dutta, A., Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conser. Recycl. 130 (2018), 164–174.
Pensupa, N., Leu, S.Y., Hu, Y., Du, C., Liu, H., Jing, H., Wang, H., Lin, C.S.K., Recent trends in sustainable textile waste recycling methods: current situation and future prospects. Top. Curr. Chem., 375(5), 2017, 76.
Pham, T.P., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R., Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 38 (2015), 399–408.
Pig World, Straw Prices for the Week Ending January 27, 2019. 2019 http://www.pig-world.co.uk/news/numbers/weekly_bhsma_straw-prices.html.
Pinazo, J.M., Domine, M.E., Parvulescu, V., Petru, F., Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal. Today. 239 (2015), 17–24.
Qu, T., Zhang, X., Gu, X., Han, L., Ji, G., Chen, X., Xiao, W., Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain. Chem. Eng. 5:9 (2017), 7733–7742.
Raab, A.M., Lang, C., Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioengineered bugs 2:2 (2011), 120–123.
Raab, A.M., Gebhardt, G., Bolotina, N., Weuster-Botz, D., Lang, C., Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12:6 (2010), 518–525.
Regev-Rudzki, N., Karniely, S., Pines, O., Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol. Biol. Cell. 16:9 (2005), 4163–4171.
Rezaei, M.N., Aslankoohi, E., Verstrepen, K.J., Courtin, C.M., Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation. Int. J. Food Microbiol. 204 (2015), 24–32.
Ryu, H.W., Kang, K.H., Yun, J.S., Bioconversion of fumarate to succinate using glycerol as a carbon source. Brian, H.D., Mark, F., (eds.) Twentieth Symposium on Biotechnology for Fuels and Chemicals, 1999, Springer, 511–520.
Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G., Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. F. 17:3 (2018), 512–531.
Saini, J.K., Saini, R., Tewari, L., Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5:4 (2015), 337–353.
Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K., Bioethanol production from agricultural wastes: an overview. Renew. Energ. 37:1 (2012), 19–27.
Sato, M., Nakahara, T., Yamada, K., Fermentative production of succinic acid from n-paraffin by Candida brumptii IFO 0731. J. Agric. Chem. Soc. Japan. 36:11 (2014), 1969–1974.
Saxena, R.K., Saran, S., Isar, J., Kaushik, R., Production and applications of succinic acid. Ashok, P., Sangeeta, N., Carlos, R.S., (eds.) Current Developments in Biotechnology and Bioengineering, 2017, Elsevier, 601–630.
Song, H., Lee, S.Y., Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39:3 (2006), 352–361.
Statista, Dextrose Production in the United States From 2005 to 2016 (in 1,000 Short Tons). 2017 https://www.statista.com/statistics/496482/dextrose-production-in-the-us/.
Sun, Z., Li, M., Qi, Q., Gao, C., Lin, C.S.K., Mixed food waste as renewable feedstock in succinic acid fermentation. Appl. Biochem. Biotech. 174:5 (2014), 1822–1833.
Taing, O., Taing, K., Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur. Food Res. Technol. 224:3 (2007), 343–347.
Tan, J.P., Jahim, J.M., Harun, S., Wu, T.Y., Overview of the potential of bio-succinic acid production from oil palm fronds. J. Phys. Sci, 2017, 28.
Taylor, R., Nattrass, L., Alberts, G., Robson, P., Chiaramonti, D., From the Sugar Platform to Biofuels and Biochemicals: Final Report for the European Commission Directorate-general Energy., 2015 https://ec.europa.eu/energy/sites/ener/files/documents/EC%20Sugar%20Platform%20final%20report.pdf.
Transparency Market Research (TMR), T.M, Global Bio-based Succinic Acid Market: Snapshot. 2017 (Accessed April 18, 2020 https://www.transparencymarketresearch.com/bio-succinic-acid.html.
Vemuri, G., Eiteman, M., Altman, E., Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol 28:6 (2002), 325–332.
Vemuri, G.N., Eiteman, M.A., Altman, E., Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol 68:4 (2002), 1715–1727.
Verwaal, R., Wu, L., Damveld, R., Sagt, C., 2009. Succinate production in a eukaryotic cell. WO Patent WO2009065778A1.
Vivek, N., Pandey, A., Binod, P., Biological valorization of pure and crude glycerol into 1, 3-propanediol using a novel isolate Lactobacillus brevis N1E9. 3.3. Bioresour. Technol. 213 (2016), 222–230.
Wallaces Farmer, What Are Baled Cornstalks Worth?. 2018 https://www.wallacesfarmer.com/farm-operations/what-are-baled-cornstalks-worth.
Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., Xing, J., Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process Biochem. 46:1 (2011), 365–371.
Winkler, A.A., De Hulster, A.F., Van Dijken, J.P., Pronk, J.T., 2008. Malic Acid Production in Recombinant Yeast. U.S. Patent Application No. 11/554,730.
Yan, D., Wang, C., Zhou, J., Liu, Y., Yang, M., Xing, J., Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour. Technol. 156 (2014), 232–239.
Yan, Q., Zheng, P., Dong, J.J., Sun, Z.H., A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J. Chem. Technol. Biotechnol. 89:11 (2014), 1760–1766.
Yang, X., Wang, H., Li, C., Lin, C.S.K., Restoring of glucose metabolism of engineered Yarrowia lipolytica for succinic acid production via a simple and efficient adaptive evolution strategy. J. Agric. Food Chem. 65:20 (2017), 4133–4139.
Yu, Q., Cui, Z., Zheng, Y., Huo, H., Meng, L., Xu, J., Gao, C., Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH. Biochem. Eng. J. 139 (2018), 51–56.
Yuzbashev, T.V., Yuzbasheva, E.Y., Vybornaya, T.V., Larina, A.S., Matsui, K., Fukui, K., Sineoky, S.P., Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol. Bioeng. 107:4 (2010), 673–682.
Yuzbashev, T.V., Bondarenko, P.Y., Vybornaya, T.V., Larina, A.S., Sineoky, S.P., Metabolic evolution and (13) C flux analysis of a succinate dehydrogenase deficient strain of Yarrowia lipolytica. Biotechnol. Bioeng. 113:11 (2016), 2425–2432.
Zeikus, J.G., Chemical and fuel production by anaerobic bacteria. Microbiol. 34 (1980), 423–464.
Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T., Ingram, L.O., Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 106:48 (2009), 20180–20185.
Zhang, X., Shanmugam, K.T., Ingram, L.O., Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 76:8 (2010), 2397–2401.
Zheng, P., Dong, J.J., Sun, Z.H., Ni, Y., Fang, L., Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour. Technol. 100:8 (2009), 2425–2429.
Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X., Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 24 (2014), 87–96.