[en] Methane leakage is a crucial issue regarding its potential Green House effect. This study developed a quantile regression model for methane estimation over a municipal solid waste treatment plant (MSW) subject to biogas leakages and monitored with MOS gas sensors. Experimental data from 6 MOS gas sensors and a methane FID analyser taken during fourth months have been used for that purpose. The data processing consisted of (i) a drift correction, (ii) the addition of interactions, (iii) a principal component analysis (PCA) to extract new uncorre-lated predictors, and (iv) a log transform of the methane data distribution. The forecast ability of the derived field calibrated model, compared with results from PLS regression, indicates well how helpful has been the data processing methods. Moreover, it highlighted, with some caution, the interest in using the quantile regression and interactions for models with MOS gas sensors considering the cross-sensitivity.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Taguem Ngoualadjio, Eric Martial ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Mennicken, Luisa ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Romain, Anne-Claude ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Language :
English
Title :
Quantile regression with a metal oxide sensors array for methane prediction over a municipal solid waste treatment plant
Yang, S., Talbot, R., Frish, M., Golston, L., Aubut, N., Zondlo, M., Gretencord, C., McSpiritt, J., Natural gas fugitive leak detection using an unmanned aerial vehicle: measurement system description and mass balance approach (2018) Atmosphere, 9, p. 383
European Commission, Joint Research Centre, JRC Reference Report on Monitoring of Emissions to Air and Water From IED Installations: Industrial Emissions Directive 2010/75/EU (integrated Pollution Prevention and Control) (2018), https://data.europa.eu/doi/10.2760/344197, Publications Office LU (accessed November 23, 2020)
Collier-Oxandale, A., Casey, J.G., Piedrahita, R., Ortega, J., Halliday, H., Johnston, J., Hannigan, M.P., Assessing a low-cost methane sensor quantification system for use in complex rural and urban environments (2018) Atmos. Meas. Tech. Discuss., 11, pp. 3569-3594
Mead, M.I., Popoola, O.A.M., Stewart, G.B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J.J., Jones, R.L., The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks (2013) Atmos. Environ., 70, pp. 186-203
Burgués, J., Marco, S., Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors (2018) Sensors, 18, p. 339
van den Bossche, M., Rose, N.T., De Wekker, S.F.J., Potential of a low-cost gas sensor for atmospheric methane monitoring (2017) Sens. Actuators B Chem., 238, pp. 501-509
Castell, N., Dauge, F.R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., Bartonova, A., Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? (2017) Environ. Int., 99, pp. 293-302
Spinelle, L., Gerboles, M., Villani, M.G., Aleixandre, M., Bonavitacola, F., Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2 (2017) Sens. Actuators B Chem., 238, pp. 706-715
Barcelo-Ordinas, J.M., Doudou, M., Garcia-Vidal, J., Badache, N., Self-calibration methods for uncontrolled environments in sensor networks: a reference survey (2019) Ad Hoc Netw., 88, pp. 142-159
Drift reduction for metal-oxide sensor arrays using canonical correlation regression and partial least squares (2001) Electron. Noses Olfaction 2000, pp. 157-162. , 0 ed. CRC Press
Burgués, J., Marco, S., Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors (2018) Anal. Chim. Acta, 1019, pp. 49-64
De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G., On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario (2008) Sens. Actuators B Chem., 129, pp. 750-757
Zimmerman, N., Presto, A.A., Kumar, S.P.N., Gu, J., Hauryliuk, A., Robinson, E.S., Robinson, A.L., Subramanian, R., A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring (2018) Atmos. Meas. Tech. Discuss., 11, pp. 291-313
Marco, S., Gutierrez-Galvez, A., Signal and data processing for machine olfaction and chemical sensing: a review (2012) IEEE Sens. J., 12, pp. 3189-3214
Koenker, R., Bassett, G., Regression Quantiles (1978) Econometrica, 46, p. 33
Furno, M., Goodness of fit and misspecification in quantile regressions (2011) J. Educ. Behav. Stat., 36, pp. 105-131
Furno, M., Predictions in quantile regressions (2014) Open J. Stat., 4, pp. 504-517
Nicolas, J., Romain, A.-C., Ledent, C., The electronic nose as a warning device of the odour emergence in a compost hall (2006) Sens. Actuators B Chem., 116, pp. 95-99
Romain, A.-C., Molitor, N., Adam, G., Bietlot, E., Collard, C., Comparison low cost chemical sensors analytical instruments for odour monitoring in municipal waste plants (2016) Chem. Eng. Trans., 54, pp. 211-216
Chaulya, S.K., Prasad, G.M., Sensing and Monitoring Technologies for Mines and Hazardous Areas: Monitoring and Prediciton Technologies (2016), Elsevier Amsterdam
Liland, K.H., Almøy, T., Mevik, B.-H., Optimal choice of baseline correction for multivariate calibration of spectra (2010) Appl. Spectrosc., 64, pp. 1007-1016
Koenker, R., Machado, J.A.F., Goodness of fit and related inference processes for quantile regression (1999) J. Am. Stat. Assoc., 94, pp. 1296-1310
Buchinsky, M., Recent advances in quantile regression models: a practical guideline for empirical research (1998) J. Hum. Resour., 33, p. 88
Cook, B.L., Manning, W.G., Thinking Beyond the Mean: a Practical Guide for Using Quantile Regression Methods for Health Services Research (2013), 5
Zou, H., Yuan, M., Regularised simultaneous model selection in multiple quantiles regression (2008) Comput. Stat. Data Anal., 52, pp. 5296-5304
Wu, Y., Liu, Y., Variable selection in quantile regression (2009) Stat. Sin., 19, pp. 801-817
Kucheryavskiy, S., Mdatools – r package for chemometrics (2020) Chemometr. Intell. Lab. Syst., 198, p. 103937
Andersen, C.M., Bro, R., Variable selection in regression-a tutorial (2010) J. Chemom., 24, pp. 728-737
Holmberg, M., Davide, F.A.M., Di Natale, C., D'Amico, A., Winquist, F., Lundström, I., Drift counteraction in odour recognition applications: lifelong calibration method (1997) Sens. Actuators B Chem., 42, pp. 185-194
Romain, A.C., Nicolas, J., Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview (2010) Sens. Actuators B Chem., 146, pp. 502-506
Taguem, E.M., Romain, A.-C., MOS sensors array for methane monitoring with UAS (2019) 2019 IEEE Int. Symp. Olfaction Electron. Nose ISOEN, IEEE, Fukuoka, Japan, pp. 1-4
Spencer, B., Alfandi, O., Al-Obeidat, F., A refinement of lasso regression applied to temperature forecasting (2018) Procedia Comput. Sci., 130, pp. 728-735
Di, S., Falasconi, M., Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges (2012) Adv. Chem. Sens., , W. Wang InTech