Article (Scientific journals)
Quantile regression with a metal oxide sensors array for methane prediction over a municipal solid waste treatment plant
Taguem Ngoualadjio, Eric Martial; Mennicken, Luisa; Romain, Anne-Claude
2021In Sensors and Actuators. B, Chemical, 334, p. 129590
Peer Reviewed verified by ORBi
 

Files


Full Text
preprint.pdf
Author preprint (1.63 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
gas sensor; regression; methane
Abstract :
[en] Methane leakage is a crucial issue regarding its potential Green House effect. This study developed a quantile regression model for methane estimation over a municipal solid waste treatment plant (MSW) subject to biogas leakages and monitored with MOS gas sensors. Experimental data from 6 MOS gas sensors and a methane FID analyser taken during fourth months have been used for that purpose. The data processing consisted of (i) a drift correction, (ii) the addition of interactions, (iii) a principal component analysis (PCA) to extract new uncorre-lated predictors, and (iv) a log transform of the methane data distribution. The forecast ability of the derived field calibrated model, compared with results from PLS regression, indicates well how helpful has been the data processing methods. Moreover, it highlighted, with some caution, the interest in using the quantile regression and interactions for models with MOS gas sensors considering the cross-sensitivity.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Taguem Ngoualadjio, Eric Martial ;  Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Mennicken, Luisa ;  Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Romain, Anne-Claude  ;  Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Surveillance de l'environnement
Language :
English
Title :
Quantile regression with a metal oxide sensors array for methane prediction over a municipal solid waste treatment plant
Publication date :
May 2021
Journal title :
Sensors and Actuators. B, Chemical
ISSN :
0925-4005
eISSN :
1873-3077
Publisher :
Elsevier Sequoia, Lausanne, Switzerland
Volume :
334
Pages :
129590
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
GRoNe Proje (2014-2020) – Project N° : 024-4-09-076
Funders :
Interreg Grande Région
Available on ORBi :
since 17 February 2021

Statistics


Number of views
131 (33 by ULiège)
Number of downloads
250 (15 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
7
OpenCitations
 
2
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi