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Quantile regression with a metal oxide sensors array for methane prediction 
over a municipal solid waste treatment plant 
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Abstract:  

Methane leakage is a crucial issue regarding its potential Green House effect. This study developed a 
quantile regression model for methane estimation over a municipal solid waste treatment plant (MSW) 
subject to biogas leakages and monitored with MOS gas sensors. Experimental data from 6 MOS gas 
sensors and a methane FID analyser taken during fourth months have been used for that purpose. The data 
processing consisted of (i) a drift correction, (ii) the addition of interactions, (iii) a principal component 
analysis (PCA) to extract new uncorrelated predictors, and (iv) a log transform of the methane data 
distribution. The forecast ability of the derived field calibrated model, compared with results from PLS 
regression, indicates well how helpful has been the data processing methods. Moreover, it highlighted, with 
some caution, the interest in using the quantile regression and interactions for models with MOS gas sensors 
considering the cross-sensitivity. 
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1. Introduction 
 

Methane is one of the major greenhouse gases considering its contribution to global warming over 100 
years [1]. Nowadays, monitoring of methane has become essential with the ongoing climate change issue, 
and it is widely done by reference methods (e.g. eddy covariance, methane gas analysers, optical methane 
gas analysers [2]). However, the spatial coverage of these methods remains a limit considering the cost, 
technical skills required in addition to logistical challenges. New approaches involving the use of low-cost 
gas sensors can be helpful since they might expand the spatial resolution [3–5]. For example, several devices 
based on low-cost sensors and arranged as networks for continuous measurements can enhance spatial 
resolution and temporal resolution [6]. 

Besides the extensive use in the monitoring of air pollutants such as nitrogen oxides (NOx), carbon 
monoxide (CO) with low-cost electrochemical sensors, low-cost metal oxide semiconductors (MOS) gas 
sensors have been used for field monitoring in both quantitative and qualitative approaches (e.g. electronic 
nose for odour pattern recognition but also in device for methane determination [3,6]). It has been noted 
that for a quantitative approach with MOS gas sensors, laboratory calibrated model showed promising 
results, but the predictive performance becomes poor out of the laboratory [7]. In the context of field 
application, the cross-sensitivity of MOS gas sensors, the signal drift[8] and local environmental factors 
have been reported as the main reasons for inconsistency of predictive models derived from laboratory 
calibration [9]. In the same manner, predictive models derived from field calibration approaches also suffer 
from MOS sensors cross-sensitivity or changes in environmental factors. It is a concern that needs 
investigation. 

In recent years, there has been a growing interest in using complex algorithms for model calibration on 
data from MOS gas sensors. Besides the traditional approaches based on multi-linear regression or partial 
least square regression [10,11], complex algorithms from machine learning as neural network or support 
vector machine regression have been used with promising results [12,13]. Machine learning provides a 
wide range of useful tools for data mining. However, the choice of appropriate tools regarding predictive 
performance, the model complexity, and interpretability are key challenges. For instance, sophisticated 
methods lead to black-box models with difficulties in linking model terms with a physical phenomenon. 
On the other hand, simple approaches as linear regression remain the best way to avoid overfitting and give 
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a better chance for generalisation. However, they might suffer from the presence of a significant bias on 
prediction [14].  

Multiple linear regression also called Ordinary Least Squares (OLS) regression, as it is based on 
minimising the sum of squares of residuals, is the methodology widely used to describe the relationship 
between a dependent variable (target) and a subset of independent variables (predictors). However, OLS 
regression is subject to several assumptions (linearity, heteroscedasticity, normal distribution of errors, no 
autocorrelation). If one of them is violated, the prediction may become questionable. Beside the OLS 
regression, the quantile regression (QR) introduced by Koenker and Basset [15] has become a matter of 
interest. It is based on minimising the least absolute deviation (LAD), robust against outliers and interesting 
for dealing with non-normal data distribution and tailed distributions [16,17]. 

In this article, we propose to explore the development of a QR predictive model for field methane 
concentration from a dataset presenting the consideration mentioned above (drift, cross-sensitivity, 
environmental factors effects, non-normal data distribution). We also investigate predictive ability and the 
limits of the use of the final derived model. The final methodology will be used to develop a model with 
new or other MOS gas sensors that could be used with a ground mobile robot or a drone for field monitoring. 
 
2. Material and methods 
 
2.1 Experimental site description 
 

The data were recorded on a MSW plant located in a rural area in Belgium. Because of a non-disclosure 
agreement, we cannot give its localisation. The MSW is over 50 ha in size and houses several economic 
activities in addition to biogas production. Due to unwanted CH4 leakages from the waste disposal site, the 
surrounding area was expected to show a significant increase of methane mixing ratio in the air at certain 
moments. 
 
2.2 Instruments 
 

Two devices installed in a mobile laboratory-called trailer- of the Institut Scientifique de Service Public 
(ISSeP) were used during the whole experimentation to monitor the biogas and methane concentration: a 
MOS sensors array device and a FID gas analyser. The MOS device has been designed by the ULiège 
"Sensing of Atmospheres and Monitoring" research unit. It contained six commercial gas sensors from 
Figaro® and UST® (TGS2602, TGS2610, TGS2611, TGS2620, GGS1330, TGS2444).  
They have been selected knowing that MOS gas sensors show a slightly higher sensitivity to some 
compounds with respect to others and have a broad-ranged overlapping sensitivity. Consequently, we knew 
that our selected sensor array could show a response in the presence of biogas. The number of sensors has 
been limited to six, regarding the availability on the electronic board. A complete description of the device 
can be found in previous papers [18,19]. 

To measure methane concentration in ppmv, a Flame Ionisation Detector (FID), regularly calibrated 
following the European Ambient Air quality directive [2] was used. Commonly used in portable gas 
chromatographs, FIDs respond to the presence of methane and other hydrocarbon gases [20].  
 
2.3 Data collection 
 

The trailer from ISSeP was installed as close as possible to a location known to be subject to unwanted 
biogas leakages according to the prevailing wind and local topography relief. An air sampling probe at 2.8 
m from the ground was used to collect the air above the mobile laboratory, and the same sampled air was 
driven to both measurement devices thanks to a "Tee" connection. The FID analyser's acquisition time was 
instantly and average to 30 minutes following the European Ambient Air directive [2]. The same was done 
with all gas sensors' resistance so that sensors and methane datasets can be paired. Data from both devices 
were recorded in internal memory and downloaded after.  
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2.4 Dataset Description 
 

 
Fig. 1. a) Measurements of the CH4 concentration peaks and relative humidity. MOS gas sensor signals showing similar peaking 
are presented in the plot (b), and the sensors showing a signal drift are presented in the plot (c). 

Data were collected from the end of August 2016 until the end of January 2017. For methane analyser, 
records started from the 24/08/2016 00:00:00 to 30/01/2017 while for MOS gas sensors they started from 
29/08/2016 13:28:57 to 30/01/2017 23:55:13. Due to electrical issues and maintenance activities on mobile 
laboratory, no records were sometimes encountered on both datasets. They have been considered as missing 
values and removed. The remaining datasets were paired afterwards in one single dataset. Such that for one 
record, the following information was available: time (UTC zone format), MOS gas sensor conductance in 
microsiemens (µS), and methane mixing ratio in part per million (ppmv) (Fig. 1).  

For this paper, the dataset was interesting in the light of all potential sources of variability observed on 
the evolution of MOS gas sensors signals. Fig. 1a and b show methane releases and MOS gas sensors 
responses (TGS2610, TG2612). Other interesting points are the break on sensors signals visible for 
instance, on TGS2620 signal (Fig. 1c) and a continuous conductance increase for four sensors (TGS2602, 
TGS2611, TGS2620 and GGS1330). 
 
2.5 Data pre-processing and model set up 
 

Sensors conductances (inverse of the resistance) recorded from the 6 MOS gas sensors have been taken 
as primary predictive variables and the measured CH4 concentration from FID analyser as a proxy for the 
real CH4 concentration. Methane concentration distribution appeared to be a tailed distribution because 
many records taking during a quiet period of activity over the MSW site showed a methane concentration 
values close to the background concentration. For regression, we considered the raw value and its log value 
(Fig. 2a).  

We used the Iterative Restrictive Least Square method from Baseline package in R [21] to remove the 
drift observed on MOS gas sensors signals (Fig. 2b). The drift correction did not remove the signal break 
mentioned in the previous section. It is well illustrated in Fig. 2c by the change in variability of 2 sensors 
over three parts of the dataset (the first part before the break, the second part from October 2016 to 
December 2016 and the last part in January 2017). It should be understood as a change in response evolution 
due to unexplained external changes (not a drift!). 

After applying the drift correction, we considered four configurations for the model designing by 
combining, or not, two modifications on model setup. The first one consisted of adding sensors interactions 
to take full variable possibilities (main effects and interactions), and the second one was the log 
transformation of [CH4] dataset.  
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Fig. 2.  Density curves of [CH4] and log([CH4]). Median of each data distribution has been plotted in dashed line. b) Drift correction 
on MOS gas sensor GGS1330. c) Box plots of TGS2610 and TGS2620 sensors conductances over three parts of the dataset.  

 
Because of the sensors' cross-sensitivity and non-specificity, their measurements often showed up the 

same trend simultaneously, as presented in Fig. 1b and c. The signal is then expected to be located in the 
combination of several sensors because they can react to a range of chemical compounds. The interaction 
term is defined here as a multiplication of sensors signals taken at the same time. Interactions up to the 
maximal order of 6, leading to 63 terms (Table 1), can be used as explanatory variables in the prediction 
model. These interactions enabled us to consider the effects of multiple sensors simultaneously.  
 
Table 1. Main effect and interactions. 

S2602 denoting the TGS2602 sensors data and S2602∙S2610 the interaction between S2602 and S2610. 

Order Number of interaction Example of an interaction term 
1 𝐶 = 6 S2602 

2 𝐶 = 15 S2602∙S2610 

3 𝐶 = 20 S2602∙S2610∙S2611 
4 𝐶 = 15 S2602∙S2610∙S2611∙S2620 
5 𝐶 = 6 S2602∙S2610∙S2611∙S2620∙S1330 
6 𝐶 = 1 S2602∙S2610∙S2611∙S2620∙S1330∙S2444 
Total 63  

 

Once all pre-processing operations were made, Principal Component Analysis (PCA) has been done to 
get new uncorrelated variables before going through the model training process. 
 
2.6. Quantile regression (QR) 
 

The theoretical basis of the QR has been widely presented in several papers [15,16,22], and here we 
only showed the basic equations behind this particular approach of linear regression. Let (𝑋 , … , 𝑋 )  be a 
sample of a random variable 𝑋 with the distribution 𝐹. The empirical quantile of order τ is defined as 
𝑄 (𝜏) = inf {𝑥 ∶  𝐹 (𝑥)  ≥  𝜏}. For all 𝜏 ∈ [0,1], the loss function is defined by the following equation: 

𝜌 (𝑥) = 𝑥 𝜏 − 𝟏(𝑥 < 0)  ; 

 𝑤𝑖𝑡ℎ 𝟏(∙) 𝑡ℎ𝑒 "indicator function" 𝑔𝑖𝑣𝑖𝑛𝑔 
𝜏𝑥    𝑖𝑓 𝑥 > 0

(𝜏 − 1)𝑥 𝑖𝑓 𝑥 < 0
   (1) 

Let ( 𝑥 , … , 𝑥 ) be n quantitative observations. The empirical quantile of order τ minimises the 
following objective function:  𝑉(𝜀) =  ∑ 𝜌  (𝑦 − 𝜀)  with  𝑦 the dependent variable of interest. 
For a given conditional quantile of order 𝜏, the model is written as a linear combination in terms of 𝑥 with 
a set of coefficients 𝛽 estimated by: 
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𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛( 𝜌  (𝑦 −  𝑥 𝛽 )) 𝑤𝑖𝑡ℎ 𝛽 ∈  𝑅   (2) 

The model (noted 𝑄𝑢𝑎𝑛𝑡  (𝑦  |𝑥 ) =  𝑥  𝛽 ) estimates the conditional quantile of order τ of the 
dependent variable (𝑦) given a set of predictors (𝑥). The quantile's coefficients (𝛽 ), for a given regressor 
𝑗 associated to the 𝑗th element of 𝑥, should be interpreted as a marginal change in the 𝜏th conditional quantile 
of 𝑦 given 𝑥 due to a marginal change in the 𝑗th variable [23]. A misguided idea from the name quantile 
regression may emerge, but it does 𝒏𝒐𝒕 mean that regression is applied on a subsample of data or a quantile 
at all [24]. We want the reader to keep in mind its similarity with the classic linear regression. 
 
2.7. The goodness-of-fit index (R1) and Cross-validation 
 

The goodness-of-fit index, for a given quantile of order 𝜏, is defined from the value of the objective 
function of the unrestricted model (𝑉 𝛽 ) and the restricted model (𝑉 𝛽 ). The restricted model being 
defined with only the intercept (no predictor) [16]. 

𝑅 (𝜏) = 1 −  
𝑉 𝛽

𝑉 𝛽
  (3) 

𝑅  is an analogue of the criterion 𝑅  used in OLS regression. In contrast to the 𝑅  coefficient, it gives a 
local information because it is computed for each quantile [22].  

The cross-validation was done by using dedicated functions proposed by the R package named rqPEN. 
This package performs the regularised regression called Least Absolute Shrinkage Selection Operation 
(LASSO). It consists of adding a constraint on the model coefficients thanks to a tuning parameter called 
lambda (𝜆) (see equation 4)[25].  

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛( 𝜌  𝑦 − 𝑥 𝛽 )   +  𝜆 |𝛽 |     𝑤𝑖𝑡ℎ 𝛽 ∈  𝑅   (4) 

The benefit of Lasso Penalization is that it is also a useful tool for making a model selection or reducing 
the number model equation terms. By changing the 𝜆 value, some coefficients are set to zero and therefore 
will not be considered in the final model equation. It is essential to reduce the number of predictors variables 
such that only the most relevant variables are kept in the final model allowing a more straightforward 
interpretation [26].  
 
 
 
2.8 Model development, training and testing 
 
We first performed a Principal Component Analysis (PCA) on the data set (raw data, raw data + 
interactions, raw data + interactions + drift correction) to study the dataset variability and the effects of pre-
processing method (Section 3.1). After that, we investigated the QR model's quality considering data 
processing methods and selected quantiles 𝜏 = 0.1, 0.25, 0.5, 0.75 and 0.90 (Section 3.2). For that purpose, 
the goodness-of-fit index (𝑅 ) and the sum of absolute deviations (SAD) were used as a proxy for 
comparison. We normalised the SAD for each specific quantile by dividing it by the SAD at 𝜏 = 0.5. The 
main reason is to keep findings comparable. The log([CH4]) use leads to SAD values different from the 
case without log transformation. 
We used 80% of the dataset for model training(cross-validation +model selection) and 20% for model 
testing. For a given penalty term 𝜆 between 0 and 1, the QR model is cross-validated with the 10-folds 
method. The model selection is performed by choosing a typical value of the tuning parameter 𝜆, allowing 
to keep the cross-validation error acceptable (minimum) while avoiding overfitting.  
For model testing (section 3.4), we considered the QR models with full processing (interactions, PCA 
transformation of predictors, and Lasso Cross-validation), with simple processing (only the Lasso Cross-



6 
 

validation has been used), with best single sensor (only one sensor with the Lasso Cross-validation) and 
the PLS regression (signal from 6 MOS sensors were used as input). For all modelling approaches, the drift 
correction and the log([CH4]) were used. 
We also considered two cases for testing data: Case 1 with testing data taken in January 2016 (previous 
80% for the model setting), and the prediction with testing data taken in September 2016 (case 2). The case 
2 is interesting considering the change in sensors signals evolution reported in section 2.5 (see TGS2620, 
GGS1330 in Fig. 1c and Fig. 2c). 
 
The Mean Absolute Percentage Error (MAPE) has been used as a proxy for model performances evaluation 
and comparison. MAPE, given in percentage, is calculated from exact values of the testing dataset and 
predicted values (Equation 5).  

𝑀𝐴𝑃𝐸 =   ∑   (5) 
 
PLS regression, described in [11], is done thanks to the R package called mdatools [27]. This R package 
allows doing the model cross-validation and model selection (selection of the optimal number of 
components based on local minimum on the RMSE plot, selection of most important variables). For the 
most important variables, the selectivity ratio [28] is considered. The PLS regression prediction 
performance is expressed by the Root Mean Square Percentage Error (RMSPE). 
 
 
3. Results 
 
3.1 PCA  
 

The PCA's results have been labelled considering the month (Fig. 3a, c and e) and methane concentration 
level (Fig. 3b, d and f). On the one hand, we observed that PC2 (38.9% of explained variance) was linked 
to the signal break noted in October 2016 in addition to a sensors drift denoting a monthly evolution of the 
baseline signal (Fig. 1 and 3a) while PC3 (7.6%) was partially linked to biogas activity over the MSW site 
(Fig. 3b). On the other hand, PC1(49.8%) appeared to be related to biogas composition, especially to 
ammonia and VOCs. MOS gas sensors which contributed mostly to PC1 were TGS2620 (with 27.14% as 
a percentage of contribution) and TGS2444 (26.03%). A statistical analysis of the individual's contributions 
to PC3 of records with methane concentration greater and less than 2.5 ppm showed that records with 
methane concentration greater than 2.5 ppm were the most contributors (p-value of Wilcoxon test < 
2.2 ∙  𝑒 ). The full information about biogas captured by PCA was well summarised by PC1 and PC3. 
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Fig. 3. PCA plots of three datasets. Original dataset (a, b), dataset with interactions (c, d) and dataset with drift correction and 
interactions (e, f). Months have been represented by rainbow colour and the biogas activity over the MSW presented by two classes 
(no activity: [CH4] <= 2.5 ppm; activity: [CH4] > 2.5 ppm). Arrows have represented variables with a significant contribution (raw 
sensors data and interactions) to PCA dimensions.  

 
Considering the dataset with six-order interactions of MOS sensors (Fig. 3c and d), there was a change 

in the percentage of explained variances distribution compared with previous findings (56.8% for PC1, 
32.4% to PC2 and 6.4% for PC3).  More surprisingly, terms representing interactions between MOS gas 
sensors (2nd order interactions) were most contributors to PCA dimensions (e.g. S1330∙S2444 with 7.56% to 
PC1 and S2602∙S2611 with 8.89% to PC2). In Fig. 3e and f, there was clear evidence that the drift correction 
played its role. No signal break and drift effect have been noted as it was the case on Fig. 4a and b. On the 
other hand, Fig. 4f also showed a clear separation of the dataset by PC1 and PC3, considering the biogas 
activity level on MSW. 

A possible explanation for the break, observed on signal (Fig. 1c and 2c) and PCA plots (Fig. 3a and c), 
might be a change in the chemical composition of the surrounding air mixture over the MSW occurred in 
October 2016. However, a note of caution is due here since we have no additional information to 
corroborate that. According to recent studies, the reasons for MOS sensors drift could be poisoning or 
ageing of sensors or a continuous change of environmental conditions [29]. However, a clear distinction 
between a long term drift linked to the sensing device and "time drift" linked to external factors should be 
made[30].  In this study, we did not investigate the leading cause of drift, but we suspected that the relative 
humidity might have played a role.  

The most striking observation on the findings is that neither the first component nor the second 
component, are bound to methane concentration. This particular situation might not be observed in the 
context of laboratory calibration, where the most important source of variability is the gas concentration. 
Previous research on MOS sensors calibration in the laboratory for methane detection showed that the 
concentration was bound to PC1 [31] but, the continuous measurements approach had not been used.  
Overall, findings mentioned before draw our attention to the importance of paying attention to the link 
between principal components and target gas concentration.  
 
3.2 Quantile regression models development   
 

The QR model development’s results (Fig. 4a) showed that 𝑅  values were ranged from 0.072 to 0.577. 
The max value was observed when log transformation and interactions were used in the model 
configuration, irrespective of quantiles. Regardless of the model configuration, the highest value of 𝑅  was 
systematically observed for quantile 𝜏 = 0.9. It was apparent that the goodness-of-fit index increased with 
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conditional quantiles, showing a quite difference, between both tails (𝜏 = 0.1 and 0.9) and the median (𝜏 = 
0.5). A possible explanation for the increase of 𝑅  might be the shape of methane concentration distribution 
(Fig. 2a). 

 

 
Fig. 4. The goodness-of-fit index (a) and the sum of absolute Deviation (b) of 4 model configurations with respect to conditional 
quantiles tau = 0.1, 0.25, 0.5, 0.75 and 0.9.  (c) The goodness-of-fit index (R  and R ) evolution with interactions up to the sixth 
order.  
 

In contrast to 𝑅 , SAD showed errors more important for quantile 𝜏 = 0.75, 𝜏 = 0.9 and for less complex 
model configurations (model without full data processing – see Fig. 4b). Consequently, we decided to use 
the model with 𝜏 = 0.5, sensors interactions and logarithm transform as the predictive model. Quantile 
regression models at 𝜏 = 0.1 and 𝜏 = 0.9, for their part, were used to check whether there were similar 
observations regarding coefficient terms.  

Adding interactions as predictors to the model equation led to a more complex model and increased 
goodness-of-fit index. That increase can be explained by Equations 2 and 3. A complex model's objective 
function value (with several independent terms) will always be lowest than the one from a restricted model 
(a model with no independent terms). To select which interactions order should be used, we compared 𝑅  
and 𝑅  considering interactions up the 6th order (Fig. 4c).  We observed that 𝑅  was always higher than 
𝑅 . , and after the 3rd order, there was no significant increase in 𝑅 . In the light of these results and given 
the overfitting risk, the 2nd order has been preferred.   
 
3.3 Cross-validation and model selection 
 

The cross-validation results are presented in Fig. 5a and 5b. In contrast to previous findings, the quantile 
regression model at 𝜏 = 0.5 showed a cross-validation curve with minimal error compared to the quantile 
regression model at 𝜏 = 0.1 (Fig. 4b). We also found that the 𝜆  values were close to 0. In that situation, 
many coefficients in the models were not set to zero preserving hence overfitting.  Spencer et al. [32] gave 
the same remark about the use of 𝜆  and proposed using a new tuning parameter called 𝜆 . It is 
computed between 𝜆  and a 𝜆 value where the cross-validation error starts to increase significantly. We 
used the same approach (Fig. 5b) and for quantiles 𝜏 = 0.1, 0.5 and 0.9, we found respectively 0.006, 0.024 
and 0.022 as 𝜆  values with 0.320, 0.248 and 0.538 as cross-validation errors respectively.  
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Fig. 5. (a) The Lasso Cross-validation curves of quantile regression models,  and (b) the lambda midfel selection method.  
 
The final equation for quantile 𝜏 = 0.5 obtained after model selection was: 

log ([CH ]) . = 0.77 +  0.001 ∗ 𝑃𝐶 + (−0.001) ∗ 𝑃𝐶 + 0.11 ∗ 𝑃𝐶 + 0.03 ∗ 𝑃𝐶   + 0.26 ∗ 𝑃𝐶  + 0.1 ∗
𝑃𝐶 + 0.49 ∗ 𝑃𝐶 + (−0.07) ∗ 𝑃𝐶 + 0.22 ∗ 𝑃𝐶 + (−0.11) ∗ 𝑃𝐶 + (−0.34) ∗ 𝑃𝐶 + (−0.12) ∗ 𝑃𝐶 +
(−0.46) ∗ 𝑃𝐶 + 2.01 ∗ 𝑃𝐶  

 
Fig. 6 has been made to help to understand this equation. It presents MOS gas sensors contributions 

(main effects and interactions), with predictors (PCA dimensions) associated with their respective slope 
parameters, percentage of explained variances, and correlations with [CH4]. 

At first sight, all PCA dimensions with negative coefficients were found negatively correlated with 
[CH4]. Excepted for PC7, PCA dimensions associated with null slope parameters had non-significant 
correlation with [CH4] (p-value < 0.05).  Some of them showed contributions from MOS sensors non-
sensitive to methane (e.g. PC5 with 3.47% of explained variance and with S2602 as the most important 
contributor) or contributions from interactions between non-sensitive sensors (e.g. PC10 with 0.22% of 
explained variance and S2602∙S2444 as the most important contributor).   

Unsurprisingly, PC1 and PC2 slope parameters were found very low, despite the percentage of explained 
variance associated with them. We showed in section 3.1 that these dimensions were weakly linked to 
methane.  More interesting, predictors with some high slope parameters, in absolute value, were those that 
had greater contributions from MOS sensors interactions (e.g. PC11 with 0.19% of explained variance and 
S2610∙S2444 and S2620∙S1330 as most important contributors). The same observation was made for both quantiles 
𝜏 = 0.1 and 𝜏 = 0.9.  

Although the final value of coefficient terms depended on 𝜆, there was no doubt that the cross-validated 
model described the relation between MOS sensors conductances and methane concentration.   
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Fig. 6. MOS gas sensors contributions (main effects and interactions) on PCA dimensions ordered following the absolute value of 
associated model coefficients. The percentage of explained variance on PCA dimensions is also given with their respective 
Pearson's correlation coefficients.  

 
3.4 Quantile regression model predictions 
 
This section showed the prediction results of the two cases described in section 2.8. Fig. 7 (case 2) showed 
for all models a poor agreement of predictions with exact values except for model with the best single 
sensor. The model with full processing being the one with the most important percentage error. In contrast, 
good MAPE and PLS values were obtained for the case 1 (Fig. 8), (30.95%,  38.78%, 39.79% and 51.97%  
as values with full processing and simple processing best single sensors and PLS, respectively). The model 
with the full processing correctly predicted peaks denoting biogas leakages.  
Firstly, the results in figures 7 and 8 inform us that QR and PLS regression showed similar results. However, 
we cannot claim that one is better than the other since the QR predicts a median value and PLS based on 
least square approach predicts a mean value.  The poor agreement found with testing data taken in 
September 2016 (case 2) could be explained by the signal level observed for some sensors. It was higher 
during this period than the remaining one (see Fig. 2c). This result is somewhat disappointing, but it gives 
a short overview of model sensitivity.   
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Fig. 7. (a) Quantile regression (QR) and PLS models predictions with testing data taken in September 2016. The dark blue and red 
lines represent the median regression prediction with full and simple processing, respectively; the orange band corresponds to the 
distance between the predicted concentration with tau = 0.1 and 0.9 quantiles. The magenta line and green lines are the PLS 
regression and QR with best single sensors (TGS2610). The black curve defines the exact log concentration of CH4. MAPE and 
root mean square percentage error (RMSPE) are given as model performance metrics. (b) The predicted value versus test value is 
proposed to compare models’ performances.  
 

 
Fig. 8. Quantile regression (QR) and PLS models predictions with testing data taken in January 2017. The dark blue and red lines 
represent the median regression prediction with full and simple processing, respectively; the orange band corresponds to the 
distance between the predicted concentration with tau = 0.1 and 0.9 quantiles. The magenta line and green lines are the PLS 
regression and QR with best single sensors (TGS2610). The black curve defines the exact log concentration of CH4. MAPE and 
root mean square percentage error (RMSPE) are given as model performance metrics. (b) The predicted value versus test value is 
proposed to compare models’ performances.  
 
Secondly, mixed results observed in Fig. 7 and 8 emphasise several matters of interest: How many sensors 
could be used (all sensors or the single one)? What kind of sensors (slightly higher sensitivity to combustible 
gases with respect to other compounds or not)? How important is the data processing method (full or simple 
)? How important is the training dataset (with all potential variability sources or not)? Furthermore, the 
purpose of using MOS sensors array in a portable device for field monitoring should be taken into account.  
Regarding QR performances with the best single sensor and the full processing, the full processing should 
be taken and redundant sensors removed in the sensor array. There is no need for two sensors showing 
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similar response to a given compound than the others. So, rather than using only one sensor, a sensor array 
with 3-4 MOS sensors that could be linked to external conditions encountered in the field (sensors with 
overlapping sensitivities) is the best choice.  
Overall, we were satisfied with the results obtained with this methodology despite having a tricky dataset—
moreover, these promising results with the quantile regression call for further investigations (for instance, 
a complete sensitivity analysis). It may help to (i) understand the impact of input variables (MOS sensors), 
(ii) explore the contribution broadly from each single data processing (drift correction, the addition of 
interactions and PCA for new features extraction) used before model training.  
This paper did not intend to compare the PLS regression with QR, but to show how interesting could be the 
QR for gas monitoring with MOS sensors and open a possible area of research. Indeed, the quantile 
regression gives the possibility of investigating the output variable at many points of the conditional 
distribution, allowing to get a detailed analysis of regression [16,17]. As an example, not investigated in 
this paper, complete information about the relationship between MOS sensors' conductance and the 
dependent variable (methane concentration) at any quantile of the non-normal data distribution could be 
highlighted. 
 
3.4 Conclusions 
 

This paper aimed to develop and explore a field calibration model's forecast ability for CH4 estimation 
with a MOS gas sensors array. The methodology was based on a quantile regression approach and gas 
sensors interactions. Even if the used data were far from being perfect, we found that with appropriate pre-
processing and setting up, the model gave an acceptable estimation (MAPE = 30.95 %) and can be used 
further for prediction over the same site. This study also showed the necessity to be cautious when using 
several pre-processing methods before training the model. It is also essential to consider temporal signal 
evolution for calibration development.  

The current research was not explicitly designed to investigate which drift correction method could be 
the best one. Investigations based on the overview of the different drift correction methods given by Di and 
Falasconi [33] and Romain [30] could be an area of future research. Notwithstanding this limitation, this 
study showed that all of these methods (drift correction, the addition of interaction, feature extraction from 
PCA and quantile regression) brought a significant improvement. The same methods could be used to build 
a new model with new or other MOS gas sensors and used with a ground mobile robot or a drone. This 
study should be seen as a first trial and will be followed by complete experimentations in labs. 

Quantile regression has been rarely used with MOS sensor array data. For field or laboratory application 
where data may be non-normal, this technique may be an efficient alternative to OLS. It is also the first 
time that a multiplicative combination of sensor signals has been considered. The results looked surprisingly 
powerful. Combining PCA (with different original variables and considering their interactions) seems to be 
a method that increases cross-sensitive sensor array performance. PCA on interactions sensors values + 
quantile regression had never been done before, and results promote this approach for future research. 
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