[en] Polysaccharides have received a lot of attention in biomedical research for their high potential as scaffolds owing to their unique biological properties. Fibrillar scaffolds made of chitosan demonstrated high promise in tissue engineering, especially for skin. As far as bone regeneration is concerned, curdlan (1,3-β-glucan) is particularly interesting as it enhances bone growth by helping mesenchymal stem cell adhesion, by favoring their differentiation into osteoblasts and by limiting the osteoclastic activity. Therefore, we aim to combine both chitosan and curdlan polysaccharides in a new scaffold for bone regeneration. For that purpose, curdlan was electrospun as a blend with chitosan into a fibrillar scaffold. We show that this novel scaffold is biodegradable (8% at two weeks), exhibits a good swelling behavior (350%) and is non-cytotoxic in vitro. In addition, the benefit of incorporating curdlan in the scaffold was demonstrated in a scratch assay that evidences the ability of curdlan to express its immunomodulatory properties by enhancing cell migration. Thus, these innovative electrospun curdlan–chitosan scaffolds show great potential for bone tissue engineering.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Toullec, Clément ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium > Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Le Bideau, Jean; University of Nantes, CNRS, Institut des Matériaux Jean Rouxel, France
Geoffroy, Valérie; Université of Nantes, INSERM, Regenerative Medicine and Skeleton, ONIRIS, UFR Odontologie, France
Halgand, Boris; Université of Nantes, INSERM, Regenerative Medicine and Skeleton, ONIRIS, UFR Odontologie, France > CHU Nantes, France
Buchtova, Nela; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Molina‐Peña, Rodolfo; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Garcion, Emmanuel; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Avril, Sylvie; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Sindji, Laurence; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Dube, Admire; University of the Western Cape, School of Pharmacy, South Africa
Boury, Frank; Universities of Angers and Nantes, CRCINA, SFR ICAT, France
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Curdlan–chitosan electrospun fibers as potential scaffolds for bone regeneration
Publication date :
02 February 2021
Journal title :
Polymers
ISSN :
2073-4360
Publisher :
MDPI Open Access Publishing, Switzerland
Volume :
13
Issue :
4
Pages :
526
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Ligue Nationale Contre le Cancer The french "Comité Départemental de Loire‐Altantique" The french "Région Pays‐de‐la‐Loire" FEDER - Fonds Européen de Développement Régional Walloon region the PROSTEM2 project
Shegarfi, H.; Reikeras, O. Bone transplantation and immune response. J. Orthop. Surg. 2009, 2, 206–211.
Yoshimoto, H.; Shin, Y.M.; Terai, H.; Vacanti, J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, 2077–2082, doi:10.1016/S0142‐9612(02)00635‐X.
Pape, H.C.; Evans, A.; Kobbe, P. Autologous Bone Graft: Properties and Techniques. J. Orthop. Trauma 2010, 24, S36, doi:10.1097/BOT.0b013e3181cec4a1.
Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Elsevier: Amsterdam, The Netherlands, 2004.
Donglu, S. Introduction to Biomaterials; Tsinghua University Press: Beijing, China, 2005.
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487, doi:10.3390/ijms21020487.
Rinaudo, M. Chitin and chitosan: Properties and applications. Progr. Polym. Sci. 2006, 31, 603–632, doi:10.1016/j.progpolymsci.2006.06.001.
Van de Vord, P.J.; Matthew, H.W.T.; De Silva, S.P.; Mayton, L.; Wu, B.; Wooley, P.H. Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 2002, 59, 585–590, doi:10.1002/jbm.1270.
Bagheri‐Khoulenjani, S.; Taghizadeh, S.M.; Mirzadeh, H. An investigation on the short‐term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr. Polym. 2009, 78, 773–778, doi:10.1016/j.carbpol.2009.06.020.
Rane, K.D.; Hoover, D.G. Production of Chitosan by fungi. Food Biotechnol. 1993, 7, 11–33, doi:10.1080/08905439309549843.
Croisier, F.; Jérôme, C. Chitosan‐based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792, doi:10.1016/j.eurpolymj.2012.12.009.
Leedy, M.R.; Martin, H.J.; Norowski, P.A.; Jennings, J.A.; Haggard, W.O.; Bumgardner, J.D. Use of Chitosan as a Bioactive Implant Coating for Bone‐Implant Applications. In Chitosan for Biomaterials II; Jayakumar, R., Prabaharan, M., Muzzarelli, R.A.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 129–165, doi:10.1007/12_2011_115.
Ong, S.‐Y.; Wu, J.; Moochhala, S.M.; Tan, M.‐H.; Lu, J. Development of a chitosan‐based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332, doi:10.1016/j.biomaterials.2008.07.034.
Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2009, doi:10.2174/187231309788166415.
Przekora, A.; Ginalska, G. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β‐1,3‐ glucan/HA bone scaffold implantation. Mater. Sci. Eng. C 2016, 61, 355–361.
Yang, J.; Tian, F.; Wang, Z.; Wang, Q.; Zeng, Y.‐J.; Chen, S.‐Q. Effect of chitosan molecular weight and deacetylation degree on hemostasis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84B, 131–137, doi:10.1002/jbm.b.30853.
Geng, X.; Kwon, O.‐H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26, 5427–5432, doi:10.1016/j.biomaterials.2005.01.066.
Charernsriwilaiwat, N.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Lysozyme‐loaded, electrospun chitosan‐based nanofiber mats for wound healing. Int. J. Pharm. 2012, 427, 379–384, doi:10.1016/j.ijpharm.2012.02.010.
Haider, S.; Park, S.‐Y. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J. Membr. Sci. 2009, 328, 90–96, doi:10.1016/j.memsci.2008.11.046.
Jin, S.; Li, J.; Wang, J.; Jiang, J.; Zuo, Y.; Li, Y.; Yang, F. Electrospun silver ion‐loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. Int. J. Nanomed. 2018, 13, 4591–4605, doi:10.2147/IJN.S167793.
Zhang, Y.; Venugopal, J.R.; El‐Turki, A.; Ramakrishna, S.; Su, B.; Lim, C.T. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008, 29, 4314–4322, doi:10.1016/j.biomaterials.2008.07.038.
Ghadri, N.; Anderson, K.M.; Adatrow, P.; Stein, S.H.; Su, H.; Garcia‐Godoy, F.; Karydis, A.; Bumgardner, J.D. Evaluation of Bone Regeneration of Simvastatin Loaded Chitosan Nanofiber Membranes in Rodent Calvarial Defects. J. Biomater. Nanobiotechnol. 2018, 9, 210, doi:10.4236/jbnb.2018.92012.
Gao, B.; Li, X.J.; Lin, M.; Li, Y.Y.; Dong, Y. Development of a novel absorbable nanofiber chitosan‐collagen membrane by electrospinning and the preliminary study on guided bone regeneration. Zhonghua Kou Qiang Yi Xue Za Zhi 2018, 53, 85–91, doi:10.3760/cma.j.issn.1002‐0098.2018.02.003.
McIntosh, M.; Stone, B.A.; Stanisich, V.A. Curdlan and other bacterial (1→3)‐β‐d‐glucans. Appl. Microbiol. Biotechnol. 2005, 68, 163–173.
Mohsin, A.; Sun, J.; Khan, I.M.; Hang, H.; Tariq, M.; Tian, X.; Ahmed, W.; Niazi, S.; Zhuang, Y.; Chu, J.; et al. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach. Carbohydr. Polym. 2019, 205, 626–635, doi:10.1016/j.carbpol.2018.10.047.
Jezequel, V. Curdlan: A new functional β‐glucan. Cereal Foods World 1998, 43, 361–364.
Zhang, R.; Edgar, K. Properties, Chemistry, and Applications of the Bioactive Polysaccharide Curdlan. Biomacromolecules 2014, 15, 1079–1096.
Dube, A.; Reynolds, J.; Law, W.‐C.; Maponga, C.; Prasad, P.; Morse, G. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine 2014, 10, 831–838.
Hetland, G.; Sandven, P. β‐1,3‐Glucan reduces growth of Mycobacterium tuberculosis in macrophage cultures. FEMS Immunol. Med. Microbiol. 2002, 33, 41–45, doi:10.1111/j.1574‐695X.2002.tb00570.x.
Yoshida, T.; Hatanaka, K.; Toshiyuki, U.; Kaneko, Y.; Eiichiro, S.; Hiroshi, M.; Toru, M.; Osamu, Y.; Yamamoto, N. Synthesis and structural analysis of curdlan sulfate with a potent inhibitory effect in vitro of AIDS virus infection. Macromolecules 1990, 23, 3717–3722.
Kataoka, K.; Muta, T.; Yamazaki, S.; Takeshiga, K. Activation of Macrophages by Linear (1→3)‐β‐D‐Glucans. J. Biol. Chem. 2002, 277, 36825–36831.
Przekora, A.; Benko, A.; Blazewicz, M.; Ginalska, G. Hybrid chitosan/β‐1,3‐glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Biomed. Mater. 2016, 11, 045001, doi:10.1088/1748‐6041/11/4/045001.
Yamasaki, T.; Ariyoshi, W.; Okinaga, T.; Adachi, Y.; Hosokawa, R.; Mochizuki, S.; Sakurai, K.; Nishihara, T. Dectin‐1 Agonist, Curdlan, Regulates Osteoclastogenesis by Inhibiting Nuclear Factor of Activated T‐cells Cytoplasmic 1 through Syk Kinase. J. Biol. Chem. 2014, doi:10.1074/jbc.M114.551416.
Aizawa, M.; Watanabe, K.; Tominari, T.; Matsumoto, C.; Hirata, M.; Grundler, F.M.W.; Inada, M.; Miyaura, C. Low Molecular‐ Weight Curdlan, (1→3)‐β‐Glucan Suppresses TLR2‐Induced RANKL‐Dependent Bone Resorption. Biol. Pharm. Bull. 2018, 41, 1282–1285, doi:10.1248/bpb.b18‐00057.
Przekora, A.; Palka, K.; Ginalska, G. Chitosan/β‐1,3‐glucan/calcium phosphate ceramics composites—Novel cell scaffolds for bone tissue engineering application. J. Biotechnol. 2014, 182–183, 46–53, doi:10.1016/j.jbiotec.2014.04.022.
Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J. Biomed. Sci. 2009, 16, 108, doi:10.1186/1423‐0127‐16‐108.
Tu, L.; Li, Y.; Chen, T. Techniques for fabrication and construction of three‐dimensional scaffolds for tissue engineering. Int. J. Nanomed. 2013, 8, 337–350, doi:10.2147/IJN.S38635.
Liang, D.; Hsiao, B.S.; Chu, B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 2007, 59, 1392–1412, doi:10.1016/j.addr.2007.04.021.
Li, W.‐J.; Laurencin, C.T.; Caterson, E.J.; Tuan, R.S.; Ko, F.K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002, 60, 613–621, doi:10.1002/jbm.10167.
Li, C.; Vepari, C.; Jin, H.‐J.; Kim, H.J.; Kaplan, D.L. Electrospun silk‐BMP‐2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124, doi:10.1016/j.biomaterials.2006.01.022.
Sedghi, R.; Shaabani, A.; Sayyari, N. Electrospun triazole‐based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr. Polym. 2020, 230, 115707, doi:10.1016/j.carbpol.2019.115707.
Tchemtchoua, V.T.; Atanasova, G.; Aqil, A.; Filee, P.; Garbacki, N.; Vanhooteghem, O.; Deroanne, C.; Noel, A.; Jerome, C.; Nusgens, B.; et al. Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration. Biomacromolecules 2011, 12, 3194–3204, doi:10.1021/bm200680q.
Basha, R.Y.; Kumar, T.S.S.; Selvaraj, R.; Doble, M. Silver Loaded Nanofibrous Curdlan Mat for Diabetic Wound Healing: An In Vitro and In Vivo Study. Macromol. Mater. Eng. 2018, 303, 1800234, doi:10.1002/mame.201800234.
Basha, R.Y.; Kumar, T.S.S.; Doble, M. Electrospun Nanofibers of Curdlan (β‐1,3 Glucan) Blend as a Potential Skin Scaffold Material. Macromol. Mater. Eng. 2017, 302, 1600417, doi:10.1002/mame.201600417.
Pakravan, M.; Heuzey, M.‐C.; Ajji, A. A fundamental study of chitosan/PEO electrospinning. Polymer 2011, 52, 4813–4824, doi:10.1016/j.polymer.2011.08.034.
Min, B.‐M.; Lee, S.W.; Lim, J.N.; You, Y.; Lee, T.S.; Kang, P.H.; Park, W.H. Chitin and chitosan nanofibers: Electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 2004, 45, 7137–7142, doi:10.1016/j.polymer.2004.08.048.
Van der Schueren, L.; De Schoenmaker, B.; Kalaoglu, Ö.I.; De Clerck, K. An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur. Polym. J. 2011, 47, 1256–1263, doi:10.1016/j.eurpolymj.2011.02.025.
Wade, R.J.; Burdick, J.A. Engineering ECM signals into biomaterials. Mater. Today 2012, 15, 454–459, doi:10.1016/S1369‐ 7021(12)70197‐9.
Fernandes Queiroz, M.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158, doi:10.3390/md13010141.
Grandpierre, C.; Janssen, H.‐G.; Laroche, C.; Michaud, P.; Warrand, J. Enzymatic and chemical degradation of curdlan targeting the production of β‐(1→3) oligoglucans. Carbohydr. Polym. 2008, 71, 277–286, doi:10.1016/j.carbpol.2007.05.042.
Wei, D.; Zhang, L.; Williams, D.L.; Browder, I.W. Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor‐1 dependent mechanism. Wound Repair Regen. 2002, 10, 161–168, doi:10.1046/j.1524‐475X.2002.10804.x.
Amaral, I.F.; Cordeiro, A.L.; Sampaio, P.; Barbosa, M.A. Attachment, spreading and short‐term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation, Journal of Biomaterials Science. Polym. Ed. 2007, 18, 469–485, doi:10.1163/156856207780425068.
Asghari Sana, F.; Çapkın Yurtsever, M.; Kaynak Bayrak, G.; Tunçay, E.Ö.; Kiremitçi, A.S.; Gümüşderelioğlu, M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017, 69, 617–630, doi:10.1007/s10616‐017‐0072‐9.