Abalos A., Pinazo A., Infante M. R., Casals M., García F., Manresa A., (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17 1367–1371. 10.1021/la0011735
Abbasi H., Aranda F. J., Noghabi K. A., Ortiz A., (2013). A bacterial monorhamnolipid alters the biophysical properties of phosphatidylethanolamine model membranes. Biochim. Biophys. Acta Biomemb. 1828 2083–2090. 10.1016/j.bbamem.2013.04.024 23643890
Abbasi H., Noghabi K. A., Ortiz A., (2012). Interaction of a bacterial monorhamnolipid secreted by Pseudomonas aeruginosa MA01 with phosphatidylcholine model membranes. Chem. Phys. Lipids 165 745–752. 10.1016/j.chemphyslip.2012.09.001 23000259
Abdel-Mawgoud A. M., Lepine F., Deziel E., (2010). Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86 1323–1336. 10.1007/s00253-010-2498-2 20336292
Aranda F. J., Espuny M. J., Marqués A., Teruel J. A., Manresa Á, Ortiz A., (2007). Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. Langmuir 23 2700–2705. 10.1021/la061464z 17243729
Aslam S. N., Erbs G., Morrissey K. L., Newman M.-A., Chinchilla D., Boller T., et al. (2009). Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Mol. Plant Pathol. 10 375–387. 10.1111/j.1364-3703.2009.00537.x 19400840
Bais H. P., Fall R., Vivanco J. M., (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134 307–319. 10.1104/pp.103.028712 14684838
Banat I. M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M. G., Fracchia L., et al. (2010). Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87 427–444. 10.1007/s00253-010-2589-0 20424836
Bardin M., Ajouz S., Comby M., Lopez-Ferber M., Graillot B., Siegwart M., et al. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 6:566. 10.3389/fpls.2015.00566 26284088
Benincasa M., Abalos A., Oliveira I., Manresa A., (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek 85 1–8. 10.1023/B:ANTO.0000020148.45523.415105181
Berg G., Koberl M., Rybakova D., Muller H., Grosch R., Smalla K., (2017). Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol. 93:fix050. 10.1093/femsec/fix050 28430944
Boller T., Felix G., (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60 379–406. 10.1146/annurev.arplant.57.032905.105346 19400727
Bonanomi G., Lorito M., Vinale F., Woo S. L., (2018). Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56 1–20. 10.1146/annurev-phyto-080615-100046 29768137
Borah S. N., Goswami D., Lahkar J., Sarma H. K., Khan M. R., Deka S., (2015). Rhamnolipid produced by Pseudomonas aeruginosa SS14 causes complete suppression of wilt by Fusarium oxysporum f. sp. pisi in Pisum sativum. Biocontrol 60 375–385. 10.1007/s10526-014-9645-0
Borah S. N., Goswami D., Sarma H. K., Cameotra S. S., Deka S., (2016). Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Front. Microbiol. 7:1505. 10.3389/fmicb.2016.01505 27708638
Burketova L., Trda L., Ott P. G., Valentova O., (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33(6 Pt 2), 994–1004. 10.1016/j.biotechadv.2015.01.004 25617476
Cao Y., Pi H., Chandrangsu P., Li Y., Wang Y., Zhou H., et al. (2018). Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8:4360. 10.1038/s41598-018-22782-z 29531357
Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J., (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 10:302. 10.3389/fmicb.2019.00302 30873135
Cawoy H., Mariutto M., Henry G., Fisher C., Vasilyeva N., Thonart P., et al. (2014). Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant Microb. Interact. 27 87–100. 10.1094/mpmi-09-13-0262-r 24156767
Chen J., Liu X., Fu S., An Z., Feng Y., Wang R., et al. (2020). Effects of sophorolipids on fungal and oomycete pathogens in relation to pH solubility. J. Appl. Microbiol. 128 1754–1763. 10.1111/jam.14594 31995843
Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., et al. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15 848–864. 10.1111/j.1462-2920.2012.02860.x 22934631
Chitarra G. S., Breeuwer P., Nout M. J. R., Van Aelst A. C., Rombouts F. M., Abee T., (2003). An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94 159–166. 10.1046/j.1365-2672.2003.01819.x 12534806
Chowdhury S. P., Hartmann A., Gao X., Borriss R., (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front. Microbiol. 6:780. 10.3389/fmicb.2015.00780 26284057
Coelho A. L. S., Feuser P. E., Carciofi B. A. M., de Andrade C. J., de Oliveira D., (2020). Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl. Microbiol. Biotechnol. 104 2297–2318. 10.1007/s00253-020-10354-z 31980917
D’aes J., De Maeyer K., Pauwelyn E., Höfte M., (2010). Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ. Microbiol. Rep. 2 359–372. 10.1111/j.1758-2229.2009.00104.x 23766108
D’aes J., Hua G. K., De Maeyer K., Pannecoucque J., Forrez I., Ongena M., et al. (2011). Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101 996–1004. 10.1094/phyto-11-10-0315 21405991
D’aes J., Kieu N. P., Léclère V., Tokarski C., Olorunleke F. E., De Maeyer K., et al. (2014). To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ. Microbiol. 16 2282–2300. 10.1111/1462-2920.12462 24673852
Dashtbozorg S. S., Miao S., Ju L.-K., (2016). Rhamnolipids as environmentally friendly biopesticide against plant pathogen Phytophthora sojae. Environ. Prog. Sustain. Energy 35 169–173. 10.1002/ep.12187
De Jonghe K., De Dobbelaere I., Sarrazyn R., Höfte M., (2005). Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol. 54 219–226.
Debois D., Fernandez O., Franzil L., Jourdan E., de Brogniez A., Willems L., et al. (2015). Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic Lipopeptide surfactin. Environ. Microbiol. Rep. 7 570–582. 10.1111/1758-2229.12286 25731631
Deepika K. V., Ramu Sridhar P., Bramhachari P. V., (2015). Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatalys. Agric. Biotechnol. 4 608–615. 10.1016/j.bcab.2015.09.009
Delaunois B., Farace G., Jeandet P., Clement C., Baillieul F., Dorey S., et al. (2014). Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ. Sci. Pollut. Res. Intern. 21 4837–4846. 10.1007/s11356-013-1841-4 23719689
Desoignies N., Schramme F., Ongena M., Legrève A., (2013). Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyxa betae. Mol. Plant Pathol. 14 416–421. 10.1111/mpp.12008 23279057
Etchegaray A., de Castro Bueno C., de Melo I. S., Tsai S. M., de Fátima Fiore M., Silva-Stenico M. E., et al. (2008). Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archiv. Microbiol. 190 611–622. 10.1007/s00203-008-0409-z 18654762
Farace G., Fernandez O., Jacquens L., Coutte F., Krier F., Jacques P., et al. (2015). Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol. Plant Pathol. 16 177–187. 10.1111/mpp.12170 25040001
Fu Z. Q., Dong X., (2013). Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64 839–863. 10.1146/annurev-arplant-042811-105606 23373699
Gao L., Han J., Liu H., Qu X., Lu Z., Bie X., (2017). Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie Van Leeuwenhoek 110 1007–1018. 10.1007/s10482-017-0874-y 28477175
Garcia-Brugger A., Lamotte O., Vandelle E., Bourque S., Lecourieux D., Poinssot B., et al. (2006). Early signaling events induced by elicitors of plant defenses. Mol. Plant Microb. Interact. 19 711–724.
García-Gutiérrez L., Zeriouh H., Romero D., Cubero J., de Vicente A., Pérez-García A., (2013). The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb. Biotechnol. 6 264–274. 10.1111/1751-7915.12028 23302493
Geudens N., Martins J. C., (2018). Cyclic lipodepsipeptides from Pseudomonas spp. - biological swiss-army knives. Front. Microbiol. 9:1867. 10.3389/fmicb.2018.01867 30158910
Gong A.-D., Li H.-P., Yuan Q.-S., Song X.-S., Yao W., He W.-J., et al. (2015). Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One 10:e0116871. 10.1371/journal.pone.0116871 25689464
Goswami D., Borah S. N., Lahkar J., Handique P. J., Deka S., (2015). Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. J. Basic Microbiol. 55 1265–1274. 10.1002/jobm.201500220 26173581
Goswami D., Handique P. J., Deka S., (2014). Rhamnolipid biosurfactant against Fusarium sacchari–the causal organism of pokkah boeng disease of sugarcane. J. Basic Microbiol. 54 548–557. 10.1002/jobm.201200801 23687052
Götze S., Stallforth P., (2020). Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat. Product Rep. 37 29–54. 10.1039/c9np00022d 31436775
Grau A., Gómez Fernández J. C., Peypoux F., Ortiz A., (1999). A study on the interactions of surfactin with phospholipid vesicles. Biochim. Biophys. Acta Biomemb. 1418 307–319. 10.1016/S0005-2736(99)00039-5
Haba E., Pinazo A., Jauregui O., Espuny M. J., Infante M. R., Manresa A., (2003). Physiochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 81 316–322.
Han Q., Wu F., Wang X., Qi H., Shi L., Ren A., et al. (2015). The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ. Microbiol. 17 1166–1188. 10.1111/1462-2920.12538 24934960
Henry G., Deleu M., Jourdan E., Thonart P., Ongena M., (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 13 1824–1837. 10.1111/j.1462-5822.2011.01664.x 21838773
Hoefler B. C., Gorzelnik K. V., Yang J. Y., Hendricks N., Dorrestein P. C., Straight P. D., (2012). Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc. Natl. Acad. Sci. U.S.A. 109 13082–13087. 10.1073/pnas.1205586109 22826229
Jahan R., Bodratti A. M., Tsianou M., Alexandridis P., (2020). Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv. Coll. Interf. Sci. 275:102061. 10.1016/j.cis.2019.102061 31767119
Jourdan E., Henry G., Duby F., Dommes J., Barthelemy J. P., Thonart P., et al. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant Microb. Interact. 22 456–468. 10.1094/MPMI-22-4-0456 19271960
Kawagoe Y., Shiraishi S., Kondo H., Yamamoto S., Aoki Y., Suzuki S., (2015). Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem. Biophys. Res. Commun. 460 1015–1020. 10.1016/j.bbrc.2015.03.143 25842204
Keswani C., Singh H. B., Hermosa R., Garcia-Estrada C., Caradus J., He Y. W., et al. (2019). Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Appl. Microbiol. Biotechnol. 103 9287–9303. 10.1007/s00253-019-10209-2 31707442
Kim B. S., Lee J. Y., Hwang B. K., (2000). In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag. Sci. 56 1029–1035.
Lang S., Katsiwela E., Wagner F., (1989). Antimicrobial effects of biosurfactants. Lipid Fett 91 363–366. 10.1002/lipi.19890910908
Latoud C., Peypoux F., Michel G., (1987). Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: modifications of membrane permeability and lipid composition. J. Antibiot. 40 1588–1595. 10.7164/antibiotics.40.1588 3320001
Le Mire G., Siah A., Brisset M.-N., Gaucher M., Deleu M., Jijakli M. H., (2018). Surfactin Protects Wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses. Agriculture 8:11.
Li Y., Héloir M.-C., Zhang X., Geissler M., Trouvelot S., Jacquens L., et al. (2019). Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol. Plant Pathol. 20 1037–1050. 10.1111/mpp.12809 31104350
Luo C., Zhou H., Zou J., Wang X., Zhang R., Xiang Y., et al. (2015). Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol. 99 1897–1910. 10.1007/s00253-014-6195-4 25398282
Luzuriaga-Loaiza P., Schellenberger R., De Gaetano Y., Obounou Akong F., Villaume S., Crouzet J., et al. (2018). Synthetic Rhamnolipid bolaforms trigger an innate immune response in Arabidopsis thaliana. Sci. Rep. 8:8534.
Ma Z., Hua G. K. H., Ongena M., Hofte M., (2016). Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ. Microbiol. Rep. 8 896–904. 10.1111/1758-2229.12454 27557735
Ma Z., Ongena M., Hofte M., (2017). The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep. 36 1731–1746. 10.1007/s00299-017-2187-z 28801742
Miao S., Dashtbozorg S. S., Callow N. V., Ju L.-K., (2015). Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. J. Agric. Food Chem. 63 3367–3376. 10.1021/acs.jafc.5b00033 25790115
Mnif I., Ghribi D., (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 96 4310–4320. 10.1002/jsfa.7759 27098847
Monnier N., Cordier M., Dahi A., Santoni V., Guenin S., Clement C., et al. (2020). Semi-purified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology 110 834–842. 10.1094/phyto-07-19-0275-r 31880985
Monnier N., Furlan A., Botcazon C., Dahi A., Mongelard G., Cordelier S., et al. (2018). Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Front. Plant Sci. 9:1170. 10.3389/fpls.2018.01170 30135699
Monnier N., Furlan A. L., Buchoux S., Deleu M., Dauchez M., Rippa S., et al. (2019). Exploring the dual interaction of natural rhamnolipids with plant and fungal biomimetic plasma membranes through biophysical studies. Intern. J. Mol. Sci. 20:1009. 10.3390/ijms20051009 30813553
Nalini S., Parthasarathi R., (2014). Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 173 231–238. 10.1016/j.biortech.2014.09.051 25305653
Nasir M. N., Lins L., Crowet J. M., Ongena M., Dorey S., Dhondt-Cordelier S., et al. (2017). Differential interaction of synthetic glycolipids with biomimetic plasma membrane lipids correlates with the plant biological response. Langmuir 33 9979–9987. 10.1021/acs.langmuir.7b01264 28749675
Naughton P. J., Marchant R., Naughton V., Banat I. M., (2019). Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 127 12–28. 10.1111/jam.14243 30828919
Olorunleke F. E., Hua G. K. H., Kieu N. P., Ma Z., Höfte M., (2015). Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ. Microbiol. Rep. 7 774–781. 10.1111/1758-2229.12310 26085277
Omoboye O. O., Oni F. E., Batool H., Yimer H. Z., De Mot R., Höfte M., (2019). Pseudomonas cyclic lipopeptides suppress the rice blast fungus magnaporthe oryzae by induced resistance and direct antagonism. Front. Plant Sci. 10:901. 10.3389/fpls.2019.00901 31354771
Ongena M., Jacques P., (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16 115–125.
Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9 1084–1090. 10.1111/j.1462-2920.2006.01202.x 17359279
Ortiz A., Teruel J. A., Espuny M. J., Marqués A., Manresa Á, Aranda F. J., (2006). Effects of dirhamnolipid on the structural properties of phosphatidylcholine membranes. Intern. J. Pharm. 325 99–107. 10.1016/j.ijpharm.2006.06.028 16872765
Otzen D. E., (2017). Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim. Biophys. Acta Biomemb. 1859 639–649. 10.1016/j.bbamem.2016.09.024 27693345
Penha R. O., Vandenberghe L. P. S., Faulds C., Soccol V. T., Soccol C. R., (2020). Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta 251:70. 10.1007/s00425-020-03357-7 32086615
Pérez-García A., Romero D., de Vicente A., (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22 187–193. 10.1016/j.copbio.2010.12.003 21211960
Perneel M., D’Hondt L., De Maeyer K., Adiobo A., Rabaey K., Hofte M., (2008). Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ. Microbiol. 10 778–788.
Pieterse C. M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S. C., (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28 489–521. 10.1146/annurev-cellbio-092910-154055 22559264
Pieterse C. M. J., Zamioudis C., Berendsen R. L., Weller D. M., Wees S. C. M. V., Bakker P. A. H. M., (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52 347–375. 10.1146/annurev-phyto-082712-102340 24906124
Popp J., Petö K., Nagy J., (2013). Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33 243–255. 10.1007/s13593-012-0105-x
Qi G., Zhu F., Du P., Yang X., Qiu D., Yu Z., et al. (2010). Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31 1978–1986. 10.1016/j.peptides.2010.08.003 20713103
Qian S., Lu H., Sun J., Zhang C., Zhao H., Lu F., et al. (2016). Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control 60 281–288. 10.1016/j.foodcont.2015.08.006
Raaijmakers J. M., De Bruijn I., Nybroe O., Ongena M., (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34 1037–1062. 10.1111/j.1574-6976.2010.00221.x 20412310
Rabbee M. F., Ali M. S., Choi J., Hwang B. S., Jeong S. C., Baek K. H., (2019). Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24:46. 10.3390/molecules24061046 30884857
Rahman A., Uddin W., Wenner N. G., (2015). Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16 546–558. 10.1111/mpp.12209 25285593
Rodrigues A. I., Gudina E. J., Teixeira J. A., Rodrigues L. R., (2017). Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci. Rep. 7:12907. 10.1038/s41598-017-13424-x 29018256
Rodríguez J., Tonelli M. L., Figueredo M. S., Ibáñez F., Fabra A., (2018). The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur. J. Plant Pathol. 152 845–851. 10.1007/s10658-018-1524-6
Romero D., de Vicente A., Rakotoaly R. H., Dufour S. E., Veening J.-W., Arrebola E., et al. (2007). The Iturin and Fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microb. Interact. 20 430–440. 10.1094/mpmi-20-4-0430 17427813
Sajid M., Ahmad Khan M. S., Singh Cameotra S., Safar Al-Thubiani A., (2020). Biosurfactants: potential applications as immunomodulator drugs. Immunol. Lett. 223 71–77. 10.1016/j.imlet.2020.04.003 32360573
Sanchez L., Courteaux B., Hubert J., Kauffmann S., Renault J. H., Clément C., et al. (2012). Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 160 1630–1641. 10.1104/pp.112.201913 22968829
Sánchez M., Aranda F. J., Teruel J. A., Espuny M. J., Marqués A., Manresa Á, et al., (2010). Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J. Coll. Interf. Sci. 341 240–247. 10.1016/j.jcis.2009.09.042 19837413
Sánchez M., Aranda F. J., Teruel J. A., Ortiz A., (2009). Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: a biophysical study. Chemi. Phys. Lipids 161 51–55. 10.1016/j.chemphyslip.2009.06.145 19580793
Sánchez M., Teruel J. A., Espuny M. J., Marqués A., Aranda F. J., Manresa Á, et al., (2006). Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa. Chem. Phys. Lipids 142 118–127. 10.1016/j.chemphyslip.2006.04.001 16678142
Sathi Reddy K., Yahya Khan M., Archana K., Gopal Reddy M., Hameeda B., (2016). Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour. Technol. 221 291–299. 10.1016/j.biortech.2016.09.041 27643738
Savary S., Willocquet L., Pethybridge S. J., Esker P., McRoberts N., Nelson A., (2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3 430–439. 10.1038/s41559-018-0793-y 30718852
Schellenberger R., Touchard M., Clement C., Baillieul F., Cordelier S., Crouzet J., et al. (2019). Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. Mol. Plant Pathol. 20 1602–1616. 10.1111/mpp.12857 31353775
Sen S., Borah S. N., Bora A., Deka S., (2017). Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb. Cell Factor. 16:95. 10.1186/s12934-017-0711-z 28558761
Sha R., Jiang L., Meng Q., Zhang G., Song Z., (2012). Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J. Basic Microbiol. 52 458–466. 10.1002/jobm.201100295 22052667
Sha R., Meng Q., (2016). Antifungal activity of rhamnolipids against dimorphic fungi. J. Gen. Appl. Microbiol. 62 233–239. 10.2323/jgam.2016.04.004 27666589
Sharma A., Jansen R., Nimtz M., Johri B. N., Wray V., (2007a). Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP(3) that reduces damping-off disease in Chilli and tomato nurseries. J. Nat. Products 70 941–947. 10.1021/np0700016 17511504
Sharma A., Wray V., Johri B. N., (2007b). Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan region. Archiv. Microbiol. 187 321–335. 10.1007/s00203-006-0197-2 17160408
Singh P., Cameotra S. S., (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22 142–146. 10.1016/j.tibtech.2004.01.010 15036865
Stanghellini M. E., Miller R. M., (1997). Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogen. Plant Dis. 81 4–12.
Straight P. D., Willey J. M., Kolter R., (2006). Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J. Bacteriol. 188 4918–4925. 10.1128/jb.00162-06 16788200
Syed Ab Rahman S. F., Singh E., Pieterse C. M. J., Schenk P. M., (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267 102–111. 10.1016/j.plantsci.2017.11.012 29362088
Takemoto J., Bensaci M., De Lucca A., Cleveland T., Gandhi N., Skebba V. P., (2010). Inhibition of fungi from diseased grapeby syringomycin E-rhamnolipid mixture. Am. J. Enol. Viticu. 61 120–124.
Tao Y., Bie X.-M., Lv F.-X., Zhao H.-Z., Lu Z.-X., (2011). Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J. Microbiol. 49 146–150. 10.1007/s12275-011-0171-9 21369992
Tran H., Ficke A., Asiimwe T., Hofte M., Raaijmakers J. M., (2007). Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175 731–742.
Varnier A. L., Sanchez L., Vatsa P., Boudesocque L., Garcia-Brugger A., Rabenoelina F., et al. (2009). Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 32 178–193. 10.1111/j.1365-3040.2008.01911.x 19021887
Vatsa P., Sanchez L., Clément C., Baillieul F., Dorey S., (2010). Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Intern. J. Mol. Sci. 11 5095–5108.
Waewthongrak W., Leelasuphakul W., McCollum G., (2014). Cyclic LIPopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit. PLoS One 9:e109386. 10.1371/journal.pone.0109386 25329301
Wise C., Falardeau J., Hagberg I., Avis T. J., (2014). Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104 1036–1041. 10.1094/phyto-12-13-0336-r 24679152
Wu L., Huang Z., Li X., Ma L., Gu Q., Wu H., et al. (2018). Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Front. Microbiol. 9:847. 10.3389/fmicb.2018.00847 29755447
Xiu P., Liu R., Zhang D., Sun C., (2017). Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl. Environ. Microbiol. 83:e00450-17. 10.1128/aem.00450-17 28389538
Yamamoto S., Shiraishi S., Suzuki S., (2015). Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 60 379–386. 10.1111/lam.12382 25511625
Yan F., Xu S., Chen Y., Zheng X., (2014). Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharvest Biol. Technol. 97 32–35. 10.1016/j.postharvbio.2014.05.017
Yan F., Xu S., Guo J., Chen Q., Meng Q., Zheng X., (2015). Biocontrol of post-harvest Alternaria alternata decay of cherry tomatoes with rhamnolipids and possible mechanisms of action. J. Sci. Food Agric. 95 1469–1474. 10.1002/jsfa.6845 25065672
Yoo D. S., Lee B. S., Kim E. K., (2005). Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J. Microbiol. Biotechnol. 15 1164–1169.
Yoshida S., Koitabashi M., Nakamura J., Fukuoka T., Sakai H., Abe M., et al. (2015). Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. J. Appl. Microbiol. 119 215–224. 10.1111/jam.12832 25898775
Zeriouh H., Romero D., García-Gutiérrez L., Cazorla F. M., de Vicente A., Pérez-García A., (2011). The Iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant Microb. Interact. 24 1540–1552. 10.1094/mpmi-06-11-0162 22066902
Zhong H., Yang L., Yang X., Zeng G., Liu Z., Liu Y., et al. (2015). Aggregation of low-concentration dirhamnolipid biosurfactant in electrolyte solution. RSC Adv. 5 88578–88582. 10.1039/C5RA16817A