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Abstract 16 

Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of 17 
microorganisms including fungi and bacteria. Pseudomonas, Burkholderia and Bacillus species are 18 
known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial 19 
applications. Recently, these compounds have been studied in a context of plant-microbe 20 
interactions. This mini-review describes the direct antimicrobial activities of these compounds 21 
against plant pathogens. We also provide the current knowledge on how rhamnolipids and 22 
lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given 23 
their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of 24 
these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture. 25 

 26 

Introduction 27 

Plant pathogens cause significant agricultural damages and up to 30% of crops are lost before 28 
or after harvest to plant diseases leading to huge economic losses (Jones et al., 2016). Diseases and 29 
pests are therefore major problems for sustainable agriculture in the world. Chemical pesticides are 30 
largely used to control plant disease worldwide (Popp et al., 2013). However, chemical pesticides can 31 
be detrimental to human and environmental health and therefore, development and optimization of 32 
alternative strategies to reduce their utilization for crop protection is becoming a necessity. 33 
Biocontrol is a promising strategy based on the use of organisms that decrease disease pressure by 34 
competing with the pathogen for space and nutrients, by inducing the plant’s natural defense system, 35 
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and/or by the production of antimicrobial substances (Berg et al., 2017; Bonanomi et al., 2018; Syed 36 
Ab Rahman et al., 2018). In addition, natural, ecofriendly and biodegradable compounds isolated 37 
from (micro)organisms can also be part of a biocontrol strategy. These compounds can act directly 38 
onto the pathogen via antimicrobial properties or by stimulating the plant immune system to prime 39 
plant protection against disease (Delaunois et al., 2014; Bardin et al., 2015; Keswani et al., 2019). 40 
Molecules from microbial origin stimulating the plant immune system are called invasion patterns or 41 
elicitors and are highly diverse both in nature and origins (Vatsa et al., 2010; Delaunois et al., 2014; 42 
Burketova et al., 2015; Schellenberger et al., 2019).  43 

Application of biosurfactants like mannosylerythritol lipids (MEL), trehalose dimycolate 44 
(TDM), trehalolipids, sophorolipids, rhamnolipids or lipopeptides have been studied since decades in 45 
biomedical sciences especially for their antimicrobial properties and as modulators of human innate 46 
immunity (for extensive reviews see (Singh and Cameotra, 2004; Banat et al., 2010; Vatsa et al., 47 
2010; Naughton et al., 2019; Coelho et al., 2020; Jahan et al., 2020; Sajid et al., 2020). Some of these 48 
microbial biosurfactants exhibit antimicrobial properties that are effective against a large panel of 49 
plant pathogens (Mnif and Ghribi, 2016; Penha et al., 2020). In addition, rhamnolipids and 50 
lipopeptides have recently been shown to stimulate the plant immune system conferring a better 51 
resistance to fungal and bacterial pathogens (Raaijmakers et al., 2010; Vatsa et al., 2010; 52 
Schellenberger et al., 2019). In this review, we will provide current knowledge and recent advances 53 
on the role of biosurfactants in plant protection. We will focus on rhamnolipids and lipopeptides that 54 
have been the most extensively studied in this context. 55 

 56 

Biosurfactants as biopesticides  57 

Rhamnolipids are efficient bio-fungicides 58 

Among classical glycolipidic biosurfactants, sophorolipids, MEL and cellobiose lipids have 59 
marginally been studied for their antimicrobial properties towards plant pathogens (Yoshida et al., 60 
2015; Mnif and Ghribi, 2016; Sen et al., 2017; Chen et al., 2020; Penha et al., 2020). Rhamnolipids 61 
are glycolipids produced by various bacterial species including some Pseudomonas sp. and 62 
Burkholderia sp. (Abdel-Mawgoud et al., 2010). Whereas no direct or robust evidences have been 63 
reported for rhamnolipid antibacterial or antiviral activities against plant pathogens, a large number 64 
of studies described their antifungal activities on pathogens affecting crops. These activities were 65 
mainly targeted to fungi and oomycetes including Botrytis sp., Rhizoctonia sp., Fusarium sp., 66 
Alternaria sp., Pythium sp., Phytophthora sp. or Plasmopara sp. species (Table 1). Because of their 67 
amphiphilic nature, glycolipids should be able to interact directly with plasma membranes (Otzen, 68 
2017). It was thus proposed that the mode of action of rhamnolipids against zoospore-producing 69 
plant pathogens could be a direct lysis of zoospores via the intercalation of the glycolipids within 70 
plasma membranes which are not protected by a cell wall (Stanghellini and Miller, 1997). 71 
Rhamnolipids could also affect mycelial cells resulting in their destabilization or lysis. Rhamnolipid 72 
partition into membranes strongly depends on lipid composition (Aranda et al., 2007). It was shown 73 
that purified mono and di-rhamnolipids are able to intercalate into phosphatidylcholine and 74 
phosphatidylethanolamine bilayers, notably altering their packing (Ortiz et al., 2006; Sánchez et al., 75 
2006; Sánchez et al., 2009; Abbasi et al., 2012; Abbasi et al., 2013). These insertions thus produce 76 
structural perturbations, which might affect the function of the membranes. These compounds also 77 
alter the physicochemical properties of the bilayer and disturb the hydration status of the water/lipid 78 
interface. Depending on the lipid composition of the membrane and on their concentration, 79 
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rhamnolipids are also able to permeabilize membranes (Sánchez et al., 2010) that could result in their 80 
lysis.  81 

 82 

Lipopeptides as antimicrobial agents 83 

Cyclic lipopeptides (CLPs) represent a class of biosurfactant widely produced by various 84 
bacterial species referred as plant-beneficial bacteria. Among them, Bacillus and Pseudomonas are 85 
exploited as biocontrol agents and are also the best known for the production of a range of 86 
structurally distinct and multifunctional CLPs with strong biological activities related to plant 87 
protection (Raaijmakers et al., 2010). Bacterial CLPs are powerful biosurfactants retaining strong 88 
destabilizing activities on biological membranes. Their antimicrobial activity is well documented in a 89 
context of biocontrol via direct inhibition of phytopathogens. In vitro-based assays using purified 90 
CLPs combined or not with loss of function mutants of natural producers have highlighted the 91 
extremely wide range of fungal and oomycete plant pathogens that are affected by bacterial CLPs 92 
such as fengycins and iturins (see recent reviews (Caulier et al., 2019; Rabbee et al., 2019) for 93 
Bacillus and (Geudens and Martins, 2018; Götze and Stallforth, 2020) for Pseudomonas CLPs, 94 
respectively). Many studies indicate that CLP activity is linked to their capacity to compromise the 95 
fungal cell membrane stability, resulting in cytoplasm leakage and hyphae death or inhibition of 96 
spore germination (Chitarra et al., 2003; Romero et al., 2007; Etchegaray et al., 2008; Pérez-García et 97 
al., 2011; Gong et al., 2015; Qian et al., 2016). However, the mechanistic basis of antifungal activity 98 
may be more complex and, as for rhamnolipids, the lipid composition of the targeted cell membrane 99 
could play an essential role in the microbicidal activity (Grau et al., 1999; Tao et al., 2011; Wise et 100 
al., 2014). Like other antimicrobial peptides, CLPs are not only membrane disruptive but can also 101 
directly or indirectly act on intracellular targets and alter fungal cell functions (Latoud et al., 1987; Qi 102 
et al., 2010). 103 

Antibacterial activity has also been occasionally reported for Bacillus CLPs such as iturin A, 104 
bacillomycin and locillomycins towards several plant pathogens of agronomic importance (Zeriouh 105 
et al., 2011; Luo et al., 2015; Cao et al., 2018). However, there are globally few convincing evidences 106 
for a direct bactericidal effect of Bacillus CLPs and surfactin in particular on phytopathogens or soil-107 
borne bacterial attackers. The precise antibiotic mechanistic of Bacillus CLPs against bacterial 108 
phytopathogens remains unclear even if a direct interaction with the cellular membrane of the target 109 
is also obvious (Zeriouh et al., 2011; Gao et al., 2017). However, in some instances, the inhibitory 110 
effect of some Bacillus CLPs such as surfactin (or related lichenysin and pumilacidin) is not related 111 
to a direct effect on target cell viability but rather due to some interference with key developmental 112 
processes of the pathogen such as efficient biofilm formation by Pseudomonas syringae and 113 
Ralstonia solanacearum (Bais et al., 2004; Chen et al., 2013; Xiu et al., 2017) or inhibition of aerial 114 
hyphal development of Streptomyces coelicolor (Straight et al., 2006; Hoefler et al., 2012). 115 

 116 

Stimulation of plant immunity by biosurfactants  117 

Plants have developed complex defense mechanisms leading to enhance resistance to 118 
phytopathogens. After microbial perception, early signaling events are set up including ion fluxes, 119 
reactive oxygen species (ROS) accumulation and phosphorylation cascades (Garcia-Brugger et al., 120 
2006; Bigeard et al., 2015). These early signaling and the activation of an intricate network of 121 
phytohormones, such as salicylic acid or jasmonic acid, regulate late defense-related responses 122 
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(Pieterse et al., 2012) including synthesis of antimicrobial metabolites and cell wall reinforcement. 123 
These defense responses collectively allow local plant immunity (Boller and Felix, 2009). In 124 
addition, microbial perception triggers systemic responses that are effective against a large panel of 125 
microorganisms in the whole plant (Fu and Dong, 2013; Pieterse et al., 2014). Activation of the plant 126 
immune system involves invasion patterns (IPs) molecules also known as elicitors which can 127 
originate from or be produced by the microbe (Schellenberger et al., 2019).  128 

 129 

Rhamnolipids trigger local resistance against plant pathogens  130 

Whereas most studies on glycolipid biosurfactants were focused on their antimicrobial and 131 
antifouling activities, it was recently discovered that rhamnolipids may also stimulate plant innate 132 
immunity (Vatsa et al., 2010) (Figure 1). Interestingly, despite their antimicrobial and mammalian 133 
immunomodulatory properties, no study on sophorolipids, trehalolipids, MELs or cellobiose lipids, to 134 
our knowledge, described their potential role in the activation of plant defense responses so far. 135 
Following plant sensing, rhamnolipids trigger early signaling events like accumulation of ROS in 136 
grapevine and Brassica napus (Varnier et al., 2009; Monnier et al., 2018) as well as a calcium influx 137 
and a phosphorylation cascade in grapevine (Varnier et al., 2009). Callose deposition, hormone 138 
production, defense gene activation and a hypersensitive reaction-like response are also hallmarks of 139 
rhamnolipid-triggered immunity in Brassicaceae and grapevine (Varnier et al., 2009; Sanchez et al., 140 
2012; Monnier et al., 2018; Monnier et al., 2020). It was demonstrated in Arabidopsis that 141 
rhamnolipid-mediated local resistance to Botrytis cinerea, Hyaloperonospora arabidopsidis or 142 
Pseudomonas syringae pv. tomato (Pst) involves different signaling pathways that depend on the 143 
type of pathogen (Sanchez et al., 2012). In addition, rhamnolipid potentiate defense responses 144 
induced by other elicitors like chitosan. The immune response triggered by rhamnolipids also 145 
participates in local resistance against B. cinerea and the hemibiotrophic fungus Leptosphaeria 146 
maculans in B. napus (Monnier et al., 2018; Monnier et al., 2020). A large range of rhamnolipid 147 
concentrations from 0.005 to 1 mg/mL have been used to induce immunity on these various plant 148 
species (Varnier et al., 2009; Sanchez et al., 2012; Monnier et al., 2018; Monnier et al., 2020). 149 
Synthetic biosurfactants derived from rhamnolipid structure are also elicitors. For instance, synthetic 150 
rhamnolipid bolaforms, composed of two rhamnoses separated by a fatty acid chain, trigger an 151 
immune response in Arabidopsis that varies according to fatty acid chain length (Luzuriaga-Loaiza et 152 
al., 2018). In addition, RL harboring carboxylic acid (Ac-RL) and methyl (Alk-RL) induce ROS 153 
production in this plant (Nasir et al., 2017). 154 

The way by which rhamnolipids are perceived by plant cells still remains unknown. Given 155 
their amphiphilic nature, it is postulated that they could interact with plant membrane lipids (Sanchez 156 
et al., 2012; Schellenberger et al., 2019). Recently it has been demonstrated that natural rhamnolipids 157 
fit into plant lipid-based membrane models and are located near the lipid phosphate group of the 158 
phospholipid bilayers, nearby phospholipid glycerol backbones (Monnier et al., 2019). Rhamnolipid 159 
insertion inside the lipid bilayer does not strongly affect lipid dynamics but the nature of the 160 
phytosterols could influence the effect of the glycolipids on plant plasma membrane destabilization. 161 
These subtle changes in lipid dynamics could be linked with plant defense induction (Monnier et al., 162 
2019). Interestingly, whereas no receptor for rhamnolipid perception has been identified so far, the 163 
mc-3-OH-acyl building block of rhamnolipids is sensed by the lectin S-domain-1 receptor–like 164 
kinase LORE (Kutschera et al., 2019) (Figure 1). 165 
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For some studies, it is not demonstrated whether rhamnolipid-triggered protection is driven 166 
by activation of plant defense responses and/or antimicrobial properties. For instance, treatments of 167 
pepper plants with rhamnolipids result in an enhanced protection to Phytophthora blight disease and 168 
also prevent the development of Colletotrichum orbiculare infection on leaves of cucumber plants 169 
(Kim et al., 2000). Rhamnolipids significantly decrease the incidence of water-borne damping-off 170 
disease by Phytophthora sp. and Pythium sp. (Yoo et al., 2005). Similar results were obtained in field 171 
trials on chili pepper and tomato (Sharma et al., 2007a; Sharma et al., 2007b). Using bacterial 172 
mutants, it was demonstrated that phenazine and rhamnolipids interact in the biological control of 173 
soil-borne diseases caused by Pythium sp. (Perneel et al., 2008). Syringomycin E and rhamnolipids 174 
can also act synergistically to control pathogenic and opportunistic fungi recovered from diseased 175 
grape (Takemoto et al., 2010). The control of postharvest phytopathogens on seeds or fruits for a 176 
better conservation is often related to antimicrobial activities. But we cannot exclude that protection 177 
could also be due to plant defense responses (Borah et al., 2016). When applied alone, rhamnolipids 178 
induce antioxidative reactions in cherry tomato fruit, leading to a significant reduction of fungal 179 
disease (Yan et al., 2015). When applied in combination with the biocontrol yeast agent Rhodotorula 180 
glutinis, a synergistic inhibitory effect on Alternaria alternata infection could be observed in cherry 181 
tomato fruit, leading to an efficient protection (Yan et al., 2014). This protection is associated with a 182 
higher induction of defense-related enzymes and the accumulation of antimicrobial metabolites. 183 

 184 

Lipopeptides as powerful inducers of plant systemic resistance 185 

Several studies have reported the involvement of Bacillus CLPs in plant immunity induction 186 
on various pathosystems. The potential of fengycin and surfactin CLPs to trigger plant systemic 187 
resistance was first shown on bean and tomato plants. When applied as pure compounds at 188 
micromolar concentrations, surfactin and to a lower extend fengycin induced significant disease 189 
reduction in bean and tomato infected with B. cinerea (Ongena et al., 2007). More recently, a study 190 
performed with a large range of natural Bacillus isolates strengthened the role of surfactin as ISR 191 
(induced systemic resistance) inducer since strong correlation was observed between defense-192 
inducing activity and the amount of surfactin produced by the different strains (Cawoy et al., 2014). 193 
In the same way, B. velezensis FZB42 mutant strains unable to synthesize surfactin are impaired in 194 
their ISR to Rhizoctonia solani in lettuce (Chowdhury et al., 2015). Further studies allowed enlarging 195 
the ISR elicitor role of surfactin to other plants. For example, purified surfactin was shown to 196 
increase resistance against the cucurbit powdery mildew in melon plants (García-Gutiérrez et al., 197 
2013). In the pathosystem citrus fruit/Penicillium digitatum, surfactin stimulates defense responses 198 
involved in generating signal molecules for ISR activation (Waewthongrak et al., 2014). This 199 
lipopeptide activates a plant innate response effective against Magnaporthe oryzae in perennial 200 
ryegrass (Rahman et al., 2015) or Plasmopara viticola in grapevine  (Li et al., 2019). It also reduces 201 
infection by the rhizomania disease vector Polymyxa betae in sugar beet (Desoignies et al., 2013) or 202 
by Colletotrichum gloeosporioides in strawberry leaves (Yamamoto et al., 2015). Finally, a recent 203 
study showed that Sclerotium rolfsii disease incidence was strongly reduced in Arachis hypogaea 204 
when pretreated with surfactin (Rodríguez et al., 2018). Interestingly, CLPs like surfactin do not 205 
globally provoke a strong plant defensive response associated with major genetic reprogramming and 206 
fitness cost but rather act by priming host defenses to trigger systemic resistance (Ongena et al., 207 
2007; Jourdan et al., 2009; Debois et al., 2015). Induction of plant defenses by CLPs of the iturin 208 
group has also been occasionally reported. Iturin A was shown to have a similar role as surfactin in 209 
strawberry leaves (Yamamoto et al., 2015) and also acted as an inducer of plant defense gene 210 
expression in cotton plants upon Verticillium dahliae attack (Han et al., 2015). Mycosubtilin is the 211 
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most efficient lipopeptide inducing an immune response in grapevine (Farace et al., 2015). Compared 212 
to surfactin, bacillomycin D produced by B. velezensis SQR9 has a comparable efficacy in 213 
Arabidopsis ISR elicitation to prevent infection by P. syringae or B. cinerea (Wu et al., 2018). In 214 
wheat plants, resistance towards Zymoseptoria tritici, was activated by pure surfactin used at 215 
concentrations ranging from 1 to 100 µM upon foliar application (Le Mire et al., 2018). Some CLPs 216 
synthesized by Pseudomonas sp. also display consistent ISR-triggering activity. It was first 217 
demonstrated that massetolide A produced by Pseudomonas fluorescens strain SS101 retains ISR-218 
eliciting activity in tomato plants for the control of Phytophthora infestans (Tran et al., 2007). 219 
Pseudomonas sp. strain CMR12a is a soil isolate retaining high biocontrol potential against R. solani 220 
relying mainly on the interplay between two different lipopeptides (sessilin and orfamide) and 221 
phenazine for inducing plant immunity (D'Aes et al., 2011; D'aes et al., 2014). These CLPs were also 222 
active at protecting Brassica chinensis against R. solani (Olorunleke et al., 2015). In monocots, such 223 
as rice, orfamide and other Pseudomonas CLPs such as WLIP, lokisin and entolysin, successfully 224 
induced resistance towards C. miyabeanus or M. oryzae (Ma et al., 2016; Ma et al., 2017; Omoboye 225 
et al., 2019). 226 

Up to now, how lipopeptides act and are recognized by plants cells to activate ISR remains 227 
unclear. CLPs are in most instances only active in micromolar concentrations, and defenses are more 228 
intensively induced at the highest surfactin doses. This suggests that the recognition mechanism at 229 
the plant cell surface should be of quite low affinity in contrast to other elicitors (Jourdan et al., 230 
2009). Such a low specificity may be explained by the fact that CLPs like surfactin are not perceived 231 
by a protein receptor, but rather involve a process driven by an uncommon pathway based on 232 
interaction with the lipid bilayer fraction of plant plasma membranes (Henry et al., 2011). This is 233 
supported by some studies revealing that CLP structure plays an important role for the ISR eliciting 234 
activity. Both the fatty acid chain length, the cyclic conformation of the molecule and amino acid 235 
positions in the peptide chain impact the eliciting potential of surfactin in tobacco cells (Jourdan et 236 
al., 2009; Henry et al., 2011). The activation of defense genes in Arabidopsis upon iturin A foliar 237 
treatment was also dependent on the structure of the molecule, i.e. cyclization and/or nature of the 238 
fatty acid chain (Kawagoe et al., 2015). As for rhamnolipids, the hypothesis is that lipopeptides have 239 
the ability to create some disturbance in the plant plasma membrane and could consequently activate 240 
a cascade of molecular events leading to the activation of defense mechanisms (Schellenberger et al., 241 
2019) (figure 1).  242 

Conclusion 243 
 244 
Biosurfactants, produced by bacteria, yeast, and fungi, are promising molecules for a wide variety of 245 
applications due to their potential to be commercially produced at large scales, their low toxicity and 246 
high biodegradability. In this mini-review, we provided evidences about the potential of rhamnolipids 247 
and lipopeptides for plant protection in a context of sustained agriculture. These molecules have 248 
similar dual effects by protecting plants through antimicrobial properties and stimulation of local 249 
and/or systemic plant immunity. These singular properties are essential for the efficiency of these 250 
biopesticides. Although numerous elicitors are perceived by plasma membrane receptors, recent 251 
studies on amphiphilic biosurfactants such as rhamnolipids or lipopeptides suggest that are sensed by 252 
an uncommon way involving lipids in the bilayer of the plant plasma membrane that could explain 253 
their singular elicitor activity. To better understand the mechanisms of action of biosurfactants, 254 
experiments or trials need to be realized not only on mixture but also on highly purified molecules in 255 
the future. Nevertheless, several obstacles to the development of rhamnolipid and lipopeptide 256 
applications still remain. Biosurfactant costs, their efficacies in the field and purity of compounds 257 
have to be improved to allow their use at a higher degree in crop protection. In this respect, 258 
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combination of biosurfactants should be considered to increase efficacy in field conditions. Finally, 259 
given their interesting properties it is now time to really consider ecofriendly biosurfactants as 260 
biocontrol solutions in integrated pest management. 261 
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 670 

Figure and Table Legends 671 

Figure 1. Schematic representation of dual effects of rhamnolipids and lipopeptides: 672 
antimicrobial activities and plant defense induction. mc-3-OH-acyl building block of 673 
rhamnolipids is perceived by plant through the LORE receptor 1; Rhamnolipid could be sensed 674 
through their direct insertion in plasma membrane 2. Recognition of rhamnolipids leads to early 675 
signalling events like ion fluxes (Ca2+), reactive oxygen species production (H2O2) and MAPK 676 
phosphorylation cascade 3. These early responses trigger defense gene expression, probably through 677 
activation of transcription factors (TF) and hormonal signaling pathways 4. This leads to defense 678 
mechanisms like cell wall reinforcement and PR protein accumulation 5 triggering the resistance to 679 
the microbes 6. Plant immunity due to lipopeptides does not involve a protein receptor and rely on 680 
interaction between lipopeptides and the plant membrane 7. Both rhamnolipids and lipopeptides can 681 
also have direct antimicrobial effects through direct insertion into the microbial plasma membrane 682 
8. These insertions trigger loss of cell morphology leading to pore formation 9. The pore formation 683 
causes cellular component leakage triggering microbial cell death s.	Cell death due to lipopeptides 684 
can also be indirectly due to the inhibition or activation of microbial cell functions ⑪. 685 
 686 
  687 
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Table 1: Anti-phytopathogenic properties of rhamnolipids 688 

Composition Source 
organism 

Organism 
affected 

Activity/Effect References 

Rha-Rha-C10-C10, Rha-
C10-C10 

Pseudomonas 
aeruginosa 

Phytophthora capsici, 
Pythium 
aphanidermatum, 
Plasmopara lactucae-
radicis 

Zoospore lysis (Stanghellini 
and Miller, 
1997) 

Rha-Rha-C10-C10 Pseudomonas 
aeruginosa B5 

Cercospora kikuchii, 
Cladosporium 
cucumerinum, 
Colletotrichum 
orbiculare, 
Cylindrocarpon 
destructans, 
Magnaporthe grisea, 
Phytophthora capsici 

Zoospore lysis, 
spore germination 
and hyphal growth 
inhibition 

(Kim et al., 
2000) 

Rha-Rha-C8-C10, Rha-C10-
C8/Rha-C8-C10, Rha-Rha-
C8-C12 :1, Rha-Rha-C10-C10, 
Rha-Rha-C10-C12 :1, Rha-
C10-C10, Rha-Rha-C10-
C12/Rha-Rha-C12-C10, Rha-
C10-C12 :1/Rha-C12 :1-C10, 
Rha-Rha-C12 :1-C12, Rha-
Rha-C10-C14 :1, Rha-C10-
C12/Rha-C12-C10 

Pseudomonas 
aeruginosa 47T2 

Penicillium funiculosum, 
Fusarium solani, Botrytis 
cinerea, Rhizoctonia 
solani 

Growth inhibition 
(MIC) 

(Haba et al., 
2003) 

  

Rha-Rha-C10-C10, Rha-
C10-C10, Rha-Rha-C10-
C12:1, Rha-C10-C12:1, Rha-
Rha-C10-C12, Rha-C10-C12 

Pseudomonas 
aeruginosa LBI 

Penicilium funiculosum, 
Alternaria alternata 

Growth inhibition 
(MIC) 

(Benincasa et 
al., 2004) 

Biosurfactant PRO1 
(formulation of 25% RLs) 
Plant support (the 
Netherlands) 

 

Pseudomonas 
aeruginosa 

Phytophthora cryptogea Zoospore lysis, 
reduction of 
sporangia formation 

 

(De Jonghe et 
al., 2005) 

  

Mono- and di-
rhamnolipids 

Pseudomonas 
aeruginosa IGB 83 

Phytophthora capsici, 
Phytophthora nicotianae, 
Phytophthora cactorum, 
Phytophthora infestans, 
Pythium 
aphanidermatum, 
Pythium ultimum 

Motility inhibition, 
zoospore lysis, 
mycelial growth 
inhibition 

(Yoo et al., 
2005) 

Rha-Rha-C10-C10, Rha-
C10-C10 (Jeneil 
Biosurfactant Company 
JBR599) 

Pseudomonas 
aeruginosa 

Pythium myriotylum Mycelial growth 
inhibition 

 

(Perneel et al., 
2008) 
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Biosurfactant PRO1 
(formulation of 25% RLs) 
Plant support (the 
Netherlands) 

 

Rha-Rha-C10-C10, Rha-
C10-C10 (Jeneil 
Biosurfactant Company 
JBR599) 

Pseudomonas 
aeruginosa 

Botrytis cinerea Spore germination 
and mycelial growth 
inhibition 

 

(Varnier et al., 
2009; Monnier 
et al., 2018) 

Rha-Rha-C10-C10, Rha-
C10-C10 

Pseudomonas 
aeruginosa ZJU211 

Phytophthora infestans, 
Phytophthora capsici, 
Botrytis cinerea, 
Fusarium graminearum, 
Fusarium oxysporum 

Mycelial growth 
Inhibition 

(Sha et al., 
2012) 

Rha-C8:1, Rha-C10-C10:1, 
Rha-C10:1-C10, Rha-Rha-
C10-C12:1, Rha-Rha-C12:1-
C10 

Pseudomonas 
aeruginosa DS9 

Fusarium sacchari Mycelial growth 
Inhibition 

(Goswami et 
al., 2014) 

Mono- and di-
rhamnolipids 

Pseudomonas 
aeruginosa ZJU-211 

Alternaria alternata Spore germination 
and mycelial growth 
inhibition 

(Yan et al., 
2014; Yan et 
al., 2015) 

Rha-C10-C10, Rha-Rha-
C10-C8 Other Rha or Rha-
Rha : -C10-C10, -C8-C10, -
C10-C12, -C12-C12, -C14-C10, 
-C10-C16 

Serratia rubidaea 
SNAU02 

Fusarium oxysporum, 
Colletotrichum 
gloeosporioides 

Mycelial growth 
Inhibition 

(Nalini and 
Parthasarathi, 
2014) 

Rha-C9:2, Rha-C10, Rha-
C12:3, Rha-C8-C8, Rha-C10-
C10:1, Rha-C10:1-C10, Rha-
C10-C8, Rha-C8-C10, Rha-
Rha-C10-C12, Rha-Rha-
C12-C10 

Pseudomonas 
aeruginosa SS14 

Fusarium oxysporum f. 
sp. pisi 

Fungal growth 
inhibition 

(Borah et al., 
2015) 

Rha-C10-C10, Rha-Rha-
C10-C10 

Pseudomonas 
aeruginosa KVD-
HM52 

Fusarium oxysporum Mycelial growth 
and fungal biomass 
accumulation 
inhibition 

(Deepika et al., 
2015) 

Rha-C8:2, Rha-C8:1, Rha-
C10, Rha-C12:1, Rha-Rha-
C10:1, Rha-C10-C10:1/Rha-
C10:1-C10 

Pseudomonas 
aeruginosa DS9 

 

Colletotrichum falcatum Spore germination 
and mycelial growth 
inhibition 

(Goswami et 
al., 2015) 

Rha-C8, Rha-C10-C10 Pseudomonas 
aeruginosa SS14 

Fusarium verticillioides Spore germination 
and mycelial growth 
inhibition 

(Borah et al., 
2016) 

Rha-Rha-C10, Rha-Rha-C8- Pseudomonas Sclerotium rolfsii, 
Fusarium oxysporium, 

Mycelial growth (Sathi Reddy et 
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C10, Rha-Rha-C10-C10 aeruginosa DR1 Phytophthora 

nicotianae, 
Macrophomina 
phaseolina 

inhibition al., 2016) 

Rha-Rha-C10-C10, Rha-
C10-C10 

Pseudomonas 
aeruginosa ZJU211 

Verticillium dahliae Spore germination 
and mycelial growth 
inhibition 

(Sha and 
Meng, 2016) 

Rha-C10-C8, Rha-C10-C10,  
Rha-C10-C12:1, Rha-C10-
C12, Rha-Rha-C8-C10, Rha-
Rha-C10-C10, Rha-Rha-
C10-C12:1, Rha-Rha-C10-C12 

Pseudomonas 
aeruginosa #112 

Aspergillus carbonarius Mycelial growth 
inhibition 

(Rodrigues et 
al., 2017) 

Semipurified rhamnolipid 
mixture (RL90-A, AGAE 
Technologies, Corvalis, 
USA) 

and RL90-N, NatSurFact, 
Fairfax, USA) 

Pseudomonas 
aeruginosa 

Leptosphaeria maculans Mycelial growth 
inhibition 

 

(Monnier et al., 
2020) 
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