

1 Biosurfactants in plant protection against diseases: rhamnolipids and 2 lipopeptides case study

3

4 **Jérôme Crouzet^{1†}, Anthony Arguelles-Arias^{2†}, Sandrine Dhont-Cordelier^{1†}, Sylvain
5 Cordelier^{1†}, Jelena Pršić², Florence Mazeyrat-Gourbeyre¹, Fabienne Baillieul¹, Christophe
6 Clément¹, Marc Ongena^{2†} and Stéphan Dorey^{1†*}**

7 ¹Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne,
8 Reims, France

9 ² MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of Liège,
10 Gembloux, B-5030, Belgium

11 * Correspondence:

12 Corresponding Author: Stéphan Dorey
13 stephan.dorey@univ-reims.fr

14 [†] These authors have contributed equally to this work.

15 **Keywords: rhamnolipids, lipopeptides, antimicrobial, plant immunity, elicitor, plant pathogen.**

16 **Abstract**

17 Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of
18 microorganisms including fungi and bacteria. *Pseudomonas*, *Burkholderia* and *Bacillus* species are
19 known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial
20 applications. Recently, these compounds have been studied in a context of plant-microbe
21 interactions. This mini-review describes the direct antimicrobial activities of these compounds
22 against plant pathogens. We also provide the current knowledge on how rhamnolipids and
23 lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given
24 their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of
25 these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.

26

27 **Introduction**

28 Plant pathogens cause significant agricultural damages and up to 30% of crops are lost before
29 or after harvest to plant diseases leading to huge economic losses (Jones et al., 2016). Diseases and
30 pests are therefore major problems for sustainable agriculture in the world. Chemical pesticides are
31 largely used to control plant disease worldwide (Popp et al., 2013). However, chemical pesticides can
32 be detrimental to human and environmental health and therefore, development and optimization of
33 alternative strategies to reduce their utilization for crop protection is becoming a necessity.
34 Biocontrol is a promising strategy based on the use of organisms that decrease disease pressure by
35 competing with the pathogen for space and nutrients, by inducing the plant's natural defense system,

36 and/or by the production of antimicrobial substances (Berg et al., 2017; Bonanomi et al., 2018; Syed
37 Ab Rahman et al., 2018). In addition, natural, ecofriendly and biodegradable compounds isolated
38 from (micro)organisms can also be part of a biocontrol strategy. These compounds can act directly
39 onto the pathogen *via* antimicrobial properties or by stimulating the plant immune system to prime
40 plant protection against disease (Delaunois et al., 2014; Bardin et al., 2015; Keswani et al., 2019).
41 Molecules from microbial origin stimulating the plant immune system are called invasion patterns or
42 elicitors and are highly diverse both in nature and origins (Vatsa et al., 2010; Delaunois et al., 2014;
43 Burkettova et al., 2015; Schellenberger et al., 2019).

44 Application of biosurfactants like mannosylerythritol lipids (MEL), trehalose dimycolate
45 (TDM), trehalolipids, sophorolipids, rhamnolipids or lipopeptides have been studied since decades in
46 biomedical sciences especially for their antimicrobial properties and as modulators of human innate
47 immunity (for extensive reviews see (Singh and Cameotra, 2004; Banat et al., 2010; Vatsa et al.,
48 2010; Naughton et al., 2019; Coelho et al., 2020; Jahan et al., 2020; Sajid et al., 2020). Some of these
49 microbial biosurfactants exhibit antimicrobial properties that are effective against a large panel of
50 plant pathogens (Mnif and Ghribi, 2016; Penha et al., 2020). In addition, rhamnolipids and
51 lipopeptides have recently been shown to stimulate the plant immune system conferring a better
52 resistance to fungal and bacterial pathogens (Raaijmakers et al., 2010; Vatsa et al., 2010;
53 Schellenberger et al., 2019). In this review, we will provide current knowledge and recent advances
54 on the role of biosurfactants in plant protection. We will focus on rhamnolipids and lipopeptides that
55 have been the most extensively studied in this context.

56

57 Biosurfactants as biopesticides

58 *Rhamnolipids are efficient bio-fungicides*

59 Among classical glycolipidic biosurfactants, sophorolipids, MEL and cellobiose lipids have
60 marginally been studied for their antimicrobial properties towards plant pathogens (Yoshida et al.,
61 2015; Mnif and Ghribi, 2016; Sen et al., 2017; Chen et al., 2020; Penha et al., 2020). Rhamnolipids
62 are glycolipids produced by various bacterial species including some *Pseudomonas* sp. and
63 *Burkholderia* sp. (Abdel-Mawgoud et al., 2010). Whereas no direct or robust evidences have been
64 reported for rhamnolipid antibacterial or antiviral activities against plant pathogens, a large number
65 of studies described their antifungal activities on pathogens affecting crops. These activities were
66 mainly targeted to fungi and oomycetes including *Botrytis* sp., *Rhizoctonia* sp., *Fusarium* sp.,
67 *Alternaria* sp., *Pythium* sp., *Phytophthora* sp. or *Plasmopara* sp. species (Table 1). Because of their
68 amphiphilic nature, glycolipids should be able to interact directly with plasma membranes (Otzen,
69 2017). It was thus proposed that the mode of action of rhamnolipids against zoospore-producing
70 plant pathogens could be a direct lysis of zoospores *via* the intercalation of the glycolipids within
71 plasma membranes which are not protected by a cell wall (Stanghellini and Miller, 1997).
72 Rhamnolipids could also affect mycelial cells resulting in their destabilization or lysis. Rhamnolipid
73 partition into membranes strongly depends on lipid composition (Aranda et al., 2007). It was shown
74 that purified mono and di-rhamnolipids are able to intercalate into phosphatidylcholine and
75 phosphatidylethanolamine bilayers, notably altering their packing (Ortiz et al., 2006; Sánchez et al.,
76 2006; Sánchez et al., 2009; Abbasi et al., 2012; Abbasi et al., 2013). These insertions thus produce
77 structural perturbations, which might affect the function of the membranes. These compounds also
78 alter the physicochemical properties of the bilayer and disturb the hydration status of the water/lipid
79 interface. Depending on the lipid composition of the membrane and on their concentration,

80 rhamnolipids are also able to permeabilize membranes (Sánchez et al., 2010) that could result in their
81 lysis.

82

83 **Lipopeptides as antimicrobial agents**

84 Cyclic lipopeptides (CLPs) represent a class of biosurfactant widely produced by various
85 bacterial species referred as plant-beneficial bacteria. Among them, *Bacillus* and *Pseudomonas* are
86 exploited as biocontrol agents and are also the best known for the production of a range of
87 structurally distinct and multifunctional CLPs with strong biological activities related to plant
88 protection (Raaijmakers et al., 2010). Bacterial CLPs are powerful biosurfactants retaining strong
89 destabilizing activities on biological membranes. Their antimicrobial activity is well documented in a
90 context of biocontrol *via* direct inhibition of phytopathogens. In vitro-based assays using purified
91 CLPs combined or not with loss of function mutants of natural producers have highlighted the
92 extremely wide range of fungal and oomycete plant pathogens that are affected by bacterial CLPs
93 such as fengycins and iturins (see recent reviews (Caulier et al., 2019; Rabbee et al., 2019) for
94 *Bacillus* and (Geudens and Martins, 2018; Götze and Stallforth, 2020) for *Pseudomonas* CLPs,
95 respectively). Many studies indicate that CLP activity is linked to their capacity to compromise the
96 fungal cell membrane stability, resulting in cytoplasm leakage and hyphae death or inhibition of
97 spore germination (Chitarra et al., 2003; Romero et al., 2007; Etchegaray et al., 2008; Pérez-García et
98 al., 2011; Gong et al., 2015; Qian et al., 2016). However, the mechanistic basis of antifungal activity
99 may be more complex and, as for rhamnolipids, the lipid composition of the targeted cell membrane
100 could play an essential role in the microbicidal activity (Grau et al., 1999; Tao et al., 2011; Wise et
101 al., 2014). Like other antimicrobial peptides, CLPs are not only membrane disruptive but can also
102 directly or indirectly act on intracellular targets and alter fungal cell functions (Latoud et al., 1987; Qi
103 et al., 2010).

104 Antibacterial activity has also been occasionally reported for *Bacillus* CLPs such as iturin A,
105 bacillomycin and locillomycins towards several plant pathogens of agronomic importance (Zeriouh
106 et al., 2011; Luo et al., 2015; Cao et al., 2018). However, there are globally few convincing evidences
107 for a direct bactericidal effect of *Bacillus* CLPs and surfactin in particular on phytopathogens or soil-
108 borne bacterial attackers. The precise antibiotic mechanistic of *Bacillus* CLPs against bacterial
109 phytopathogens remains unclear even if a direct interaction with the cellular membrane of the target
110 is also obvious (Zeriouh et al., 2011; Gao et al., 2017). However, in some instances, the inhibitory
111 effect of some *Bacillus* CLPs such as surfactin (or related lichenysin and pumilacidin) is not related
112 to a direct effect on target cell viability but rather due to some interference with key developmental
113 processes of the pathogen such as efficient biofilm formation by *Pseudomonas syringae* and
114 *Ralstonia solanacearum* (Bais et al., 2004; Chen et al., 2013; Xiu et al., 2017) or inhibition of aerial
115 hyphal development of *Streptomyces coelicolor* (Straight et al., 2006; Hoefler et al., 2012).

116

117 **Stimulation of plant immunity by biosurfactants**

118 Plants have developed complex defense mechanisms leading to enhance resistance to
119 phytopathogens. After microbial perception, early signaling events are set up including ion fluxes,
120 reactive oxygen species (ROS) accumulation and phosphorylation cascades (Garcia-Brugger et al.,
121 2006; Bigeard et al., 2015). These early signaling and the activation of an intricate network of
122 phytohormones, such as salicylic acid or jasmonic acid, regulate late defense-related responses

123 (Pieterse et al., 2012) including synthesis of antimicrobial metabolites and cell wall reinforcement.
124 These defense responses collectively allow local plant immunity (Boller and Felix, 2009). In
125 addition, microbial perception triggers systemic responses that are effective against a large panel of
126 microorganisms in the whole plant (Fu and Dong, 2013; Pieterse et al., 2014). Activation of the plant
127 immune system involves invasion patterns (IPs) molecules also known as elicitors which can
128 originate from or be produced by the microbe (Schellenberger et al., 2019).

129

130 ***Rhamnolipids trigger local resistance against plant pathogens***

131 Whereas most studies on glycolipid biosurfactants were focused on their antimicrobial and
132 antifouling activities, it was recently discovered that rhamnolipids may also stimulate plant innate
133 immunity (Vatsa et al., 2010) (Figure 1). Interestingly, despite their antimicrobial and mammalian
134 immunomodulatory properties, no study on sophorolipids, trehalolipids, MELs or cellobiose lipids, to
135 our knowledge, described their potential role in the activation of plant defense responses so far.
136 Following plant sensing, rhamnolipids trigger early signaling events like accumulation of ROS in
137 grapevine and *Brassica napus* (Varnier et al., 2009; Monnier et al., 2018) as well as a calcium influx
138 and a phosphorylation cascade in grapevine (Varnier et al., 2009). Callose deposition, hormone
139 production, defense gene activation and a hypersensitive reaction-like response are also hallmarks of
140 rhamnolipid-triggered immunity in *Brassicaceae* and grapevine (Varnier et al., 2009; Sanchez et al.,
141 2012; Monnier et al., 2018; Monnier et al., 2020). It was demonstrated in *Arabidopsis* that
142 rhamnolipid-mediated local resistance to *Botrytis cinerea*, *Hyaloperonospora arabidopsisidis* or
143 *Pseudomonas syringae* pv. *tomato* (*Pst*) involves different signaling pathways that depend on the
144 type of pathogen (Sanchez et al., 2012). In addition, rhamnolipid potentiate defense responses
145 induced by other elicitors like chitosan. The immune response triggered by rhamnolipids also
146 participates in local resistance against *B. cinerea* and the hemibiotrophic fungus *Leptosphaeria*
147 *maculans* in *B. napus* (Monnier et al., 2018; Monnier et al., 2020). A large range of rhamnolipid
148 concentrations from 0.005 to 1 mg/mL have been used to induce immunity on these various plant
149 species (Varnier et al., 2009; Sanchez et al., 2012; Monnier et al., 2018; Monnier et al., 2020).
150 Synthetic biosurfactants derived from rhamnolipid structure are also elicitors. For instance, synthetic
151 rhamnolipid bolaforms, composed of two rhamnoses separated by a fatty acid chain, trigger an
152 immune response in *Arabidopsis* that varies according to fatty acid chain length (Luzuriaga-Loaiza et
153 al., 2018). In addition, RL harboring carboxylic acid (Ac-RL) and methyl (Alk-RL) induce ROS
154 production in this plant (Nasir et al., 2017).

155 The way by which rhamnolipids are perceived by plant cells still remains unknown. Given
156 their amphiphilic nature, it is postulated that they could interact with plant membrane lipids (Sanchez
157 et al., 2012; Schellenberger et al., 2019). Recently it has been demonstrated that natural rhamnolipids
158 fit into plant lipid-based membrane models and are located near the lipid phosphate group of the
159 phospholipid bilayers, nearby phospholipid glycerol backbones (Monnier et al., 2019). Rhamnolipid
160 insertion inside the lipid bilayer does not strongly affect lipid dynamics but the nature of the
161 phytosterols could influence the effect of the glycolipids on plant plasma membrane destabilization.
162 These subtle changes in lipid dynamics could be linked with plant defense induction (Monnier et al.,
163 2019). Interestingly, whereas no receptor for rhamnolipid perception has been identified so far, the
164 mc-3-OH-acyl building block of rhamnolipids is sensed by the lectin S-domain-1 receptor-like
165 kinase LORE (Kutschera et al., 2019) (Figure 1).

166 For some studies, it is not demonstrated whether rhamnolipid-triggered protection is driven
167 by activation of plant defense responses and/or antimicrobial properties. For instance, treatments of
168 pepper plants with rhamnolipids result in an enhanced protection to *Phytophthora* blight disease and
169 also prevent the development of *Colletotrichum orbiculare* infection on leaves of cucumber plants
170 (Kim et al., 2000). Rhamnolipids significantly decrease the incidence of water-borne damping-off
171 disease by *Phytophthora* sp. and *Pythium* sp. (Yoo et al., 2005). Similar results were obtained in field
172 trials on chili pepper and tomato (Sharma et al., 2007a; Sharma et al., 2007b). Using bacterial
173 mutants, it was demonstrated that phenazine and rhamnolipids interact in the biological control of
174 soil-borne diseases caused by *Pythium* sp. (Perneel et al., 2008). Syringomycin E and rhamnolipids
175 can also act synergistically to control pathogenic and opportunistic fungi recovered from diseased
176 grape (Takemoto et al., 2010). The control of postharvest phytopathogens on seeds or fruits for a
177 better conservation is often related to antimicrobial activities. But we cannot exclude that protection
178 could also be due to plant defense responses (Borah et al., 2016). When applied alone, rhamnolipids
179 induce antioxidative reactions in cherry tomato fruit, leading to a significant reduction of fungal
180 disease (Yan et al., 2015). When applied in combination with the biocontrol yeast agent *Rhodotorula*
181 *glutinis*, a synergistic inhibitory effect on *Alternaria alternata* infection could be observed in cherry
182 tomato fruit, leading to an efficient protection (Yan et al., 2014). This protection is associated with a
183 higher induction of defense-related enzymes and the accumulation of antimicrobial metabolites.

184

185 *Lipopeptides as powerful inducers of plant systemic resistance*

186 Several studies have reported the involvement of *Bacillus* CLPs in plant immunity induction
187 on various pathosystems. The potential of fengycin and surfactin CLPs to trigger plant systemic
188 resistance was first shown on bean and tomato plants. When applied as pure compounds at
189 micromolar concentrations, surfactin and to a lower extend fengycin induced significant disease
190 reduction in bean and tomato infected with *B. cinerea* (Ongena et al., 2007). More recently, a study
191 performed with a large range of natural *Bacillus* isolates strengthened the role of surfactin as ISR
192 (induced systemic resistance) inducer since strong correlation was observed between defense-
193 inducing activity and the amount of surfactin produced by the different strains (Cawoy et al., 2014).
194 In the same way, *B. velezensis* FZB42 mutant strains unable to synthesize surfactin are impaired in
195 their ISR to *Rhizoctonia solani* in lettuce (Chowdhury et al., 2015). Further studies allowed enlarging
196 the ISR elicitor role of surfactin to other plants. For example, purified surfactin was shown to
197 increase resistance against the cucurbit powdery mildew in melon plants (García-Gutiérrez et al.,
198 2013). In the pathosystem citrus fruit/*Penicillium digitatum*, surfactin stimulates defense responses
199 involved in generating signal molecules for ISR activation (Waewthongrak et al., 2014). This
200 lipopeptide activates a plant innate response effective against *Magnaporthe oryzae* in perennial
201 ryegrass (Rahman et al., 2015) or *Plasmopara viticola* in grapevine (Li et al., 2019). It also reduces
202 infection by the rhizomania disease vector *Polymyxa betae* in sugar beet (Desoignies et al., 2013) or
203 by *Colletotrichum gloeosporioides* in strawberry leaves (Yamamoto et al., 2015). Finally, a recent
204 study showed that *Sclerotium rolfsii* disease incidence was strongly reduced in *Arachis hypogaea*
205 when pretreated with surfactin (Rodríguez et al., 2018). Interestingly, CLPs like surfactin do not
206 globally provoke a strong plant defensive response associated with major genetic reprogramming and
207 fitness cost but rather act by priming host defenses to trigger systemic resistance (Ongena et al.,
208 2007; Jourdan et al., 2009; Debois et al., 2015). Induction of plant defenses by CLPs of the iturin
209 group has also been occasionally reported. Iturin A was shown to have a similar role as surfactin in
210 strawberry leaves (Yamamoto et al., 2015) and also acted as an inducer of plant defense gene
211 expression in cotton plants upon *Verticillium dahliae* attack (Han et al., 2015). Mycosubtilin is the

most efficient lipopeptide inducing an immune response in grapevine (Farace et al., 2015). Compared to surfactin, bacillomycin D produced by *B. velezensis* SQR9 has a comparable efficacy in *Arabidopsis* ISR elicitation to prevent infection by *P. syringae* or *B. cinerea* (Wu et al., 2018). In wheat plants, resistance towards *Zymoseptoria tritici*, was activated by pure surfactin used at concentrations ranging from 1 to 100 µM upon foliar application (Le Mire et al., 2018). Some CLPs synthesized by *Pseudomonas* sp. also display consistent ISR-triggering activity. It was first demonstrated that massetolide A produced by *Pseudomonas fluorescens* strain SS101 retains ISR-eliciting activity in tomato plants for the control of *Phytophthora infestans* (Tran et al., 2007). *Pseudomonas* sp. strain CMR12a is a soil isolate retaining high biocontrol potential against *R. solani* relying mainly on the interplay between two different lipopeptides (sessilin and orfamide) and phenazine for inducing plant immunity (D'Aes et al., 2011; D'aes et al., 2014). These CLPs were also active at protecting *Brassica chinensis* against *R. solani* (Olorunleke et al., 2015). In monocots, such as rice, orfamide and other *Pseudomonas* CLPs such as WLIP, lokisin and entolysin, successfully induced resistance towards *C. miyabeanus* or *M. oryzae* (Ma et al., 2016; Ma et al., 2017; Omoboye et al., 2019).

Up to now, how lipopeptides act and are recognized by plants cells to activate ISR remains unclear. CLPs are in most instances only active in micromolar concentrations, and defenses are more intensively induced at the highest surfactin doses. This suggests that the recognition mechanism at the plant cell surface should be of quite low affinity in contrast to other elicitors (Jourdan et al., 2009). Such a low specificity may be explained by the fact that CLPs like surfactin are not perceived by a protein receptor, but rather involve a process driven by an uncommon pathway based on interaction with the lipid bilayer fraction of plant plasma membranes (Henry et al., 2011). This is supported by some studies revealing that CLP structure plays an important role for the ISR eliciting activity. Both the fatty acid chain length, the cyclic conformation of the molecule and amino acid positions in the peptide chain impact the eliciting potential of surfactin in tobacco cells (Jourdan et al., 2009; Henry et al., 2011). The activation of defense genes in *Arabidopsis* upon iturin A foliar treatment was also dependent on the structure of the molecule, *i.e.* cyclization and/or nature of the fatty acid chain (Kawagoe et al., 2015). As for rhamnolipids, the hypothesis is that lipopeptides have the ability to create some disturbance in the plant plasma membrane and could consequently activate a cascade of molecular events leading to the activation of defense mechanisms (Schellenberger et al., 2019) (figure 1).

Conclusion

Biosurfactants, produced by bacteria, yeast, and fungi, are promising molecules for a wide variety of applications due to their potential to be commercially produced at large scales, their low toxicity and high biodegradability. In this mini-review, we provided evidences about the potential of rhamnolipids and lipopeptides for plant protection in a context of sustained agriculture. These molecules have similar dual effects by protecting plants through antimicrobial properties and stimulation of local and/or systemic plant immunity. These singular properties are essential for the efficiency of these biopesticides. Although numerous elicitors are perceived by plasma membrane receptors, recent studies on amphiphilic biosurfactants such as rhamnolipids or lipopeptides suggest that are sensed by an uncommon way involving lipids in the bilayer of the plant plasma membrane that could explain their singular elicitor activity. To better understand the mechanisms of action of biosurfactants, experiments or trials need to be realized not only on mixture but also on highly purified molecules in the future. Nevertheless, several obstacles to the development of rhamnolipid and lipopeptide applications still remain. Biosurfactant costs, their efficacies in the field and purity of compounds have to be improved to allow their use at a higher degree in crop protection. In this respect,

259 combination of biosurfactants should be considered to increase efficacy in field conditions. Finally,
260 given their interesting properties it is now time to really consider ecofriendly biosurfactants as
261 biocontrol solutions in integrated pest management.

262

263 **Acknowledgments**

264 Support from the MESRI (Ministère de l'Enseignement Supérieur, de la Recherche et de
265 l'Innovation), the Federative Research Structure SFR Condorcet and the Interreg V France-wallonie-
266 vlaanderen program Smartbiocontrol / Bioscreen are gratefully acknowledged. M.O. thanks the
267 Fonds National de la Recherche Scientifique from Belgium (FRS-FNRS) for his position as Senior
268 Research Associate. Research in the M.O. lab is funded by the EOS (excellence of science, FRS-
269 FNRS) grant no 2018000802.

270

271 **References**

272

273 Abbasi, H., Aranda, F.J., Noghabi, K.A., and Ortiz, A. (2013). A bacterial monorhamnolipid alters
274 the biophysical properties of phosphatidylethanolamine model membranes. *Biochimica et
275 Biophysica Acta (BBA) - Biomembranes* 1828(9), 2083-2090. doi:
276 <https://doi.org/10.1016/j.bbamem.2013.04.024>.

277 Abbasi, H., Noghabi, K.A., and Ortiz, A. (2012). Interaction of a bacterial monorhamnolipid secreted
278 by *Pseudomonas aeruginosa* MA01 with phosphatidylcholine model membranes. *Chemistry
279 and Physics of Lipids* 165(7), 745-752. doi:
280 <https://doi.org/10.1016/j.chemphyslip.2012.09.001>.

281 Abdel-Mawgoud, A.M., Lepine, F., and Deziel, E. (2010). Rhamnolipids: diversity of structures,
282 microbial origins and roles. *Applied Microbiology and Biotechnology* 86(5), 1323-1336. doi:
283 [10.1007/s00253-010-2498-2](https://doi.org/10.1007/s00253-010-2498-2).

284 Aranda, F.J., Espuny, M.J., Marqués, A., Teruel, J.A., Manresa, Á., and Ortiz, A. (2007).
285 Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by
286 *Pseudomonas aeruginosa* with phospholipid membranes. *Langmuir* 23(5), 2700-2705. doi:
287 [10.1021/la061464z](https://doi.org/10.1021/la061464z).

288 Bais, H.P., Fall, R., and Vivanco, J.M. (2004). Biocontrol of *Bacillus subtilis* against infection of
289 *Arabidopsis* roots by *Pseudomonas syringae* is facilitated by biofilm formation and surfactin
290 production. *Plant physiology* 134(1), 307-319. doi: [10.1104/pp.103.028712](https://doi.org/10.1104/pp.103.028712).

291 Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., et al. (2010).
292 Microbial biosurfactants production, applications and future potential. *Applied Microbiology
293 and Biotechnology* 87(2), 427-444. doi: [10.1007/s00253-010-2589-0](https://doi.org/10.1007/s00253-010-2589-0).

294 Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., et al. (2015). Is the
295 efficacy of biological control against plant diseases likely to be more durable than that of
296 chemical pesticides? *Frontiers in Plant Science* 6, 566. doi: [10.3389/fpls.2015.00566](https://doi.org/10.3389/fpls.2015.00566).

297 Benincasa, M., Abalos, A., Oliveira, I., and Manresa, A. (2004). Chemical structure, surface
298 properties and biological activities of the biosurfactant produced by *Pseudomonas aeruginosa*
299 LBI from soapstock. *Antonie Van Leeuwenhoek* 85(1), 1-8. doi:
300 10.1023/B:ANTO.0000020148.45523.41

301 5105181 [pii].

302 Berg, G., Koberl, M., Rybakova, D., Muller, H., Grosch, R., and Smalla, K. (2017). Plant microbial
303 diversity is suggested as the key to future biocontrol and health trends. *FEMS Microbiology
304 Ecology* 93(5). doi: 10.1093/femsec/fix050.

305 Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity
306 (PTI). *Molecular Plant* 8(4), 521-539. doi: 10.1016/j.molp.2014.12.022.

307 Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated
308 molecular patterns and danger signals by pattern-recognition receptors. *Annual Review of
309 Plant Biology* 60, 379-406. doi: 10.1146/annurev.arplant.57.032905.105346.

310 Bonanomi, G., Lorito, M., Vinale, F., and Woo, S.L. (2018). Organic amendments, beneficial
311 microbes, and soil microbiota: toward a unified framework for disease suppression. *Annual
312 Review of Phytopathology* 56(1), 1-20. doi: 10.1146/annurev-phyto-080615-100046.

313 Borah, S.N., Goswami, D., Lahkar, J., Sarma, H.K., Khan, M.R., and Deka, S. (2015). Rhamnolipid
314 produced by *Pseudomonas aeruginosa* SS14 causes complete suppression of wilt by
315 *Fusarium oxysporum* f. sp. *pisi* in *Pisum sativum*. *BioControl* 60(3), 375-385. doi:
316 10.1007/s10526-014-9645-0.

317 Borah, S.N., Goswami, D., Sarma, H.K., Cameotra, S.S., and Deka, S. (2016). Rhamnolipid
318 biosurfactant against *Fusarium verticillioides* to control stalk and ear rot disease of maize.
319 *Frontiers in Microbiology* 7, 1505. doi: 10.3389/fmicb.2016.01505.

320 Burketova, L., Trda, L., Ott, P.G., and Valentova, O. (2015). Bio-based resistance inducers for
321 sustainable plant protection against pathogens. *Biotechnology Advances* 33(6 Pt 2), 994-1004.
322 doi: 10.1016/j.biotechadv.2015.01.004.

323 Cao, Y., Pi, H., Chandransu, P., Li, Y., Wang, Y., Zhou, H., et al. (2018). Antagonism of Two
324 Plant-Growth Promoting *Bacillus velezensis* Isolates Against *Ralstonia solanacearum* and
325 *Fusarium oxysporum*. *Scientific Reports* 8(1), 4360. doi: 10.1038/s41598-018-22782-z.

326 Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., and Mahillon, J. (2019). Overview of
327 the antimicrobial compounds produced by members of the *Bacillus subtilis* group. *Frontiers
328 in Microbiology* 10(302). doi: 10.3389/fmicb.2019.00302.

329 Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., et al. (2014). Plant
330 Defense Stimulation by Natural Isolates of *Bacillus* Depends on Efficient Surfactin
331 Production. *Molecular Plant-Microbe Interactions* 27(2), 87-100. doi: 10.1094/mpmi-09-13-
332 0262-r.

333 Chen, J., Liu, X., Fu, S., An, Z., Feng, Y., Wang, R., et al. (2020). Effects of sophorolipids on fungal
334 and oomycete pathogens in relation to pH solubility. *Journal of Applied Microbiology*
335 n/a(n/a). doi: 10.1111/jam.14594.

336 Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., et al. (2013). Biocontrol of tomato wilt
337 disease by *Bacillus subtilis* isolates from natural environments depends on conserved genes
338 mediating biofilm formation. *Environmental Microbiology* 15(3), 848-864. doi:
339 10.1111/j.1462-2920.2012.02860.x.

340 Chitarra, G.S., Breeuwer, P., Nout, M.J.R., Van Aelst, A.C., Rombouts, F.M., and Abee, T. (2003).
341 An antifungal compound produced by *Bacillus subtilis* YM 10–20 inhibits germination of
342 *Penicillium roqueforti* conidiospores. *Journal of Applied Microbiology* 94(2), 159-166. doi:
343 10.1046/j.1365-2672.2003.01819.x.

344 Chowdhury, S.P., Hartmann, A., Gao, X., and Borri, R. (2015). Biocontrol mechanism by root-
345 associated *Bacillus amyloliquefaciens* FZB42 – a review. *Frontiers in Microbiology* 6(780).
346 doi: 10.3389/fmicb.2015.00780.

347 Coelho, A.L.S., Feuser, P.E., Carciofi, B.A.M., de Andrade, C.J., and de Oliveira, D. (2020).
348 Mannosylerythritol lipids: antimicrobial and biomedical properties. *Applied Microbiology*
349 and Biotechnology 104(6), 2297-2318. doi: 10.1007/s00253-020-10354-z.

350 D'Aes, J., Hua, G.K., De Maeyer, K., Pannecouque, J., Forrez, I., Ongena, M., et al. (2011).
351 Biological control of *Rhizoctonia* root rot on bean by phenazine- and cyclic lipopeptide-
352 producing *Pseudomonas* CMR12a. *Phytopathology* 101(8), 996-1004. doi: 10.1094/phyto-11-
353 10-0315.

354 D'Aes, J., Kieu, N.P., Léclère, V., Tokarski, C., Olorunleke, F.E., De Maeyer, K., et al. (2014). To
355 settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol
356 strain *Pseudomonas* CMR12a. *Environmental Microbiology* 16(7), 2282-2300. doi:
357 10.1111/1462-2920.12462.

358 De Jonghe, K., De Dobbelaere, I., Sarrazyn, R., and Höfte, M. (2005). Control of *Phytophthora*
359 *cryptogea* in the hydroponic forcing of witloof chicory with the rhamnolipid-based
360 biosurfactant formulation PRO1. *Plant pathology* 54, 219-226.

361 Debois, D., Fernandez, O., Franzil, L., Jourdan, E., de Brogniez, A., Willems, L., et al. (2015). Plant
362 polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the
363 immunogenic lipopeptide surfactin. *Environmental microbiology reports* 7(3), 570-582. doi:
364 10.1111/1758-2229.12286.

365 Deepika, K.V., Ramu Sridhar, P., and Bramhachari, P.V. (2015). Characterization and antifungal
366 properties of rhamnolipids produced by mangrove sediment bacterium *Pseudomonas*
367 *aeruginosa* strain KVD-HM52. *Biocatalysis and Agricultural Biotechnology* 4(4), 608-615.
368 doi: <https://doi.org/10.1016/j.bcab.2015.09.009>.

369 Delaunois, B., Farace, G., Jeandet, P., Clement, C., Baillieul, F., Dorey, S., et al. (2014). Elicitors as
370 alternative strategy to pesticides in grapevine? Current knowledge on their mode of action
371 from controlled conditions to vineyard. *Environmental science and pollution research*
372 *international* 21(7), 4837-4846. doi: 10.1007/s11356-013-1841-4.

373 Desoignies, N., Schramme, F., Ongena, M., and Legrèvre, A. (2013). Systemic resistance induced by
374 *Bacillus* lipopeptides in *Beta vulgaris* reduces infection by the rhizomania disease vector
375 *Polymyxa betaiae*. *Molecular Plant Pathology* 14(4), 416-421. doi: 10.1111/mpp.12008.

376 Etchegaray, A., de Castro Bueno, C., de Melo, I.S., Tsai, S.M., de Fátima Fiore, M., Silva-Stenico,
377 M.E., et al. (2008). Effect of a highly concentrated lipopeptide extract of *Bacillus subtilis* on
378 fungal and bacterial cells. *Archives of Microbiology* 190(6), 611-622. doi: 10.1007/s00203-
379 008-0409-z.

380 Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P., et al. (2015). Cyclic
381 lipopeptides from *Bacillus subtilis* activate distinct patterns of defence responses in
382 grapevine. *Molecular Plant Pathology* 16(2), 177-187. doi: 10.1111/mpp.12170.

383 Fu, Z.Q., and Dong, X. (2013). Systemic acquired resistance: turning local infection into global
384 defense. *Annual Review of Plant Biology* 64(1), 839-863. doi: 10.1146/annurev-arplant-
385 042811-105606.

386 Gao, L., Han, J., Liu, H., Qu, X., Lu, Z., and Bie, X. (2017). Plipastatin and surfactin coproduction
387 by *Bacillus subtilis* pB2-L and their effects on microorganisms. *Antonie van Leeuwenhoek*
388 110(8), 1007-1018. doi: 10.1007/s10482-017-0874-y.

389 Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., et al.
390 (2006). Early signaling events induced by elicitors of plant defenses. *Molecular Plant-Microbe Interactions* 19(7), 711-724.

392 García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., de Vicente, A., and Pérez-García, A.
393 (2013). The antagonistic strain *Bacillus subtilis* UMAF6639 also confers protection to melon
394 plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-
395 dependent defence responses. *Microbial Biotechnology* 6(3), 264-274. doi: 10.1111/1751-
396 7915.12028.

397 Geudens, N., and Martins, J.C. (2018). Cyclic lipopeptides from *Pseudomonas* spp. – biological
398 swiss-army knives. *Frontiers in Microbiology* 9(1867). doi: 10.3389/fmicb.2018.01867.

399 Gong, A.-D., Li, H.-P., Yuan, Q.-S., Song, X.-S., Yao, W., He, W.-J., et al. (2015). Antagonistic
400 mechanism of Iturin A and Plipastatin A from *Bacillus amyloliquefaciens* S76-3 from wheat
401 spikes against *Fusarium graminearum*. *PLOS one* 10(2), e0116871. doi:
402 10.1371/journal.pone.0116871.

403 Goswami, D., Borah, S.N., Lahkar, J., Handique, P.J., and Deka, S. (2015). Antifungal properties of
404 rhamnolipid produced by *Pseudomonas aeruginosa* DS9 against *Colletotrichum falcatum*.
405 *Journal of Basic Microbiology* 55(11), 1265-1274. doi: 10.1002/jobm.201500220.

406 Goswami, D., Handique, P.J., and Deka, S. (2014). Rhamnolipid biosurfactant against *Fusarium*
407 *sacchari*--the causal organism of pokkah boeng disease of sugarcane. *Journal of Basic*
408 *Microbiology* 54(6), 548-557. doi: 10.1002/jobm.201200801.

409 Götze, S., and Stallforth, P. (2020). Structure, properties, and biological functions of nonribosomal
410 lipopeptides from pseudomonads. *Natural product reports* 37(1), 29-54. doi:
411 10.1039/c9np00022d.

412 Grau, A., Gómez Fernández, J.C., Peypoux, F., and Ortiz, A. (1999). A study on the interactions of
413 surfactin with phospholipid vesicles. *Biochimica et Biophysica Acta (BBA) - Biomembranes*
414 1418(2), 307-319. doi: [https://doi.org/10.1016/S0005-2736\(99\)00039-5](https://doi.org/10.1016/S0005-2736(99)00039-5).

415 Haba, E., Pinazo, A., Jauregui, O., Espuny, M.J., Infante, M.R., and Manresa, A. (2003).
416 Physiochemical characterization and antimicrobial properties of rhamnolipids produced by
417 *Pseudomonas aeruginosa* 47T2 NCBIM 40044. *Biotechnology and Bioengineering* 81(3),
418 316-322.

419 Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., et al. (2015). The bacterial lipopeptide iturins
420 induce *Verticillium dahliae* cell death by affecting fungal signalling pathways and mediate
421 plant defence responses involved in pathogen-associated molecular pattern-triggered
422 immunity. *Environmental Microbiology* 17(4), 1166-1188. doi: 10.1111/1462-2920.12538.

423 Henry, G., Deleu, M., Jourdan, E., Thonart, P., and Ongena, M. (2011). The bacterial lipopeptide
424 surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related

425 defence responses. *Cellular Microbiology* 13(11), 1824-1837. doi: 10.1111/j.1462-
426 5822.2011.01664.x.

427 Hoefler, B.C., Gorzelnik, K.V., Yang, J.Y., Hendricks, N., Dorrestein, P.C., and Straight, P.D.
428 (2012). Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass
429 spectrometry of bacterial competition. *Proceedings of the National Academy of Sciences*
430 109(32), 13082-13087. doi: 10.1073/pnas.1205586109.

431 Jahan, R., Bodratti, A.M., Tsianou, M., and Alexandridis, P. (2020). Biosurfactants, natural
432 alternatives to synthetic surfactants: Physicochemical properties and applications. *Advances*
433 in *Colloid and Interface Science* 275, 102061. doi: <https://doi.org/10.1016/j.cis.2019.102061>.

434 Jones, J.D., Vance, R.E., and Dangl, J.L. (2016). Intracellular innate immune surveillance devices in
435 plants and animals. *Science* 354(6316). doi: 10.1126/science.aaf6395.

436 Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J.P., Thonart, P., et al. (2009). Insights
437 into the defense-related events occurring in plant cells following perception of surfactin-type
438 lipopeptide from *Bacillus subtilis*. *Molecular Plant-Microbe Interactions* 22(4), 456-468. doi:
439 10.1094/MPMI-22-4-0456.

440 Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y., and Suzuki, S. (2015). Cyclic
441 lipopeptide iturin A structure-dependently induces defense response in *Arabidopsis* plants by
442 activating SA and JA signaling pathways. *Biochemical and Biophysical Research
443 Communications* 460(4), 1015-1020. doi: <https://doi.org/10.1016/j.bbrc.2015.03.143>.

444 Keswani, C., Singh, H.B., Hermosa, R., Garcia-Estrada, C., Caradus, J., He, Y.W., et al. (2019).
445 Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol
446 agents. *Applied Microbiology and Biotechnology* 103(23-24), 9287-9303. doi:
447 10.1007/s00253-019-10209-2.

448 Kim, B.S., Lee, J.Y., and Hwang, B.K. (2000). *In vivo* control and *in vitro* antifungal activity of
449 rhamnolipid B, a glycolipid antibiotic, against *Phytophthora capsici* and *Colletotrichum
450 orbiculare*. *Pest Management Science* 56(12), 1029-1035.

451 Kutschera, A., Dawid, C., Gisch, N., Schmid, C., Raasch, L., Gerster, T., et al. (2019). Bacterial
452 medium-chain 3-hydroxy fatty acid metabolites trigger immunity in *Arabidopsis* plants.
453 *Science* 364(6436), 178-181. doi: 10.1126/science.aau1279.

454 Latoud, C., Peypoux, F., and Michel, G. (1987). Action of iturin A, an antifungal antibiotic from
455 *Bacillus subtilis*, on the yeast *Saccharomyces cerevisiae*: modifications of membrane
456 permeability and lipid composition. *J Antibiot (Tokyo)* 40(11), 1588-1595. doi:
457 10.7164/antibiotics.40.1588.

458 Le Mire, G., Siah, A., Brisset, M.-N., Gaucher, M., Deleu, M., and Jijakli, M.H. (2018). Surfactin
459 Protects Wheat against *Zymoseptoria tritici* and Activates Both Salicylic Acid- and Jasmonic
460 Acid-Dependent Defense Responses. *Agriculture* 8(1), 11.

461 Li, Y., Héloir, M.-C., Zhang, X., Geissler, M., Trouvelot, S., Jacquens, L., et al. (2019). Surfactin and
462 fengycin contribute to the protection of a *Bacillus subtilis* strain against grape downy mildew
463 by both direct effect and defence stimulation. *Molecular Plant Pathology* 20(8), 1037-1050.
464 doi: 10.1111/mpp.12809.

465 Luo, C., Zhou, H., Zou, J., Wang, X., Zhang, R., Xiang, Y., et al. (2015). Bacillomycin L and
466 surfactin contribute synergistically to the phenotypic features of *Bacillus subtilis* 916 and the

467 biocontrol of rice sheath blight induced by *Rhizoctonia solani*. *Applied Microbiology and*
468 *Biotechnology* 99(4), 1897-1910. doi: 10.1007/s00253-014-6195-4.

469 Luzuriaga-Loaiza, P., Schellenberger, R., De Gaetano, Y., Obounou Akong, F., Villaume, S.,
470 Crouzet, J., et al. (2018). Synthetic rhamnolipid bolaforms trigger an innate immune response
471 in *Arabidopsis thaliana*. *Scientific Reports*.

472 Ma, Z., Hua, G.K.H., Ongena, M., and Hofte, M. (2016). Role of phenazines and cyclic lipopeptides
473 produced by *Pseudomonas* sp. CMR12a in induced systemic resistance on rice and bean.
474 *Environ Microbiol Rep* 8(5), 896-904. doi: 10.1111/1758-2229.12454.

475 Ma, Z., Ongena, M., and Hofte, M. (2017). The cyclic lipopeptide orfamide induces systemic
476 resistance in rice to *Cochliobolus miyabeanus* but not to *Magnaporthe oryzae*. *Plant Cell Rep*
477 36(11), 1731-1746. doi: 10.1007/s00299-017-2187-z.

478 Mnif, I., and Ghribi, D. (2016). Glycolipid biosurfactants: main properties and potential applications
479 in agriculture and food industry. *Journal of the Science of Food and Agriculture* 96(13),
480 4310-4320. doi: 10.1002/jsfa.7759.

481 Monnier, N., Cordier, M., Dahi, A., Santoni, V., Guenin, S., Clement, C., et al. (2020). Semi-purified
482 rhamnolipid mixes protect *Brassica napus* against *Leptosphaeria maculans* early infections.
483 *Phytopathology* 110(4), 834-842. doi: 10.1094/phyto-07-19-0275-r.

484 Monnier, N., Furlan, A., Botcazon, C., Dahi, A., Mongelard, G., Cordelier, S., et al. (2018).
485 Rhamnolipids from *Pseudomonas aeruginosa* are elicitors triggering *Brassica napus*
486 protection against *Botrytis cinerea* without physiological disorders. *Frontiers in Plant
487 Sciences* 9, 1170. doi: 10.3389/fpls.2018.01170.

488 Monnier, N., Furlan, A.L., Buchoux, S., Deleu, M., Dauchez, M., Rippa, S., et al. (2019). Exploring
489 the dual interaction of natural rhamnolipids with plant and fungal biomimetic plasma
490 membranes through biophysical studies. *International Journal of Molecular Sciences* 20(5).
491 doi: 10.3390/ijms20051009.

492 Nalini, S., and Parthasarathi, R. (2014). Production and characterization of rhamnolipids produced by
493 *Serratia rubidaea* SNAU02 under solid-state fermentation and its application as biocontrol
494 agent. *Bioresource Technology* 173, 231-238. doi:
495 <https://doi.org/10.1016/j.biortech.2014.09.051>.

496 Nasir, M.N., Lins, L., Crowet, J.M., Ongena, M., Dorey, S., Dhondt-Cordelier, S., et al. (2017).
497 Differential interaction of synthetic glycolipids with biomimetic plasma membrane lipids
498 correlates with the plant biological response. *Langmuir* 33(38), 9979-9987. doi:
499 10.1021/acs.langmuir.7b01264.

500 Naughton, P.J., Marchant, R., Naughton, V., and Banat, I.M. (2019). Microbial biosurfactants:
501 current trends and applications in agricultural and biomedical industries. *Journal of Applied
502 Microbiology* 127(1), 12-28. doi: 10.1111/jam.14243.

503 Olorunleke, F.E., Hua, G.K.H., Kieu, N.P., Ma, Z., and Höfte, M. (2015). Interplay between
504 orfamides, sessilins and phenazines in the control of *Rhizoctonia* diseases by *Pseudomonas*
505 sp. CMR12a. *Environmental Microbiology Reports* 7(5), 774-781. doi: 10.1111/1758-
506 2229.12310.

507 Omoboye, O.O., Oni, F.E., Batool, H., Yimer, H.Z., De Mot, R., and Höfte, M. (2019). *Pseudomonas*
508 Cyclic Lipopeptides Suppress the Rice Blast Fungus *Magnaporthe oryzae* by Induced

549 Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., and Baek, K.H. (2019). *Bacillus*
 550 *velezensis*: A valuable member of bioactive molecules within plant microbiomes. *Molecules*
 551 24(6). doi: 10.3390/molecules24061046.

552 Rahman, A., Uddin, W., and Wenner, N.G. (2015). Induced systemic resistance responses in
 553 perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin
 554 lipopeptides and live cells of *Bacillus amyloliquefaciens*. *Molecular Plant Pathology* 16(6),
 555 546-558. doi: 10.1111/mpp.12209.

556 Rodrigues, A.I., Gudina, E.J., Teixeira, J.A., and Rodrigues, L.R. (2017). Sodium chloride effect on
 557 the aggregation behaviour of rhamnolipids and their antifungal activity. *Scientific Reports*
 558 7(1), 12907. doi: 10.1038/s41598-017-13424-x.

559 Rodríguez, J., Tonelli, M.L., Figueredo, M.S., Ibáñez, F., and Fabra, A. (2018). The lipopeptide
 560 surfactin triggers induced systemic resistance and priming state responses in *Arachis*
 561 *hypogaea* L. *European Journal of Plant Pathology* 152(3), 845-851. doi: 10.1007/s10658-
 562 018-1524-6.

563 Romero, D., de Vicente, A., Rakotoaly, R.H., Dufour, S.E., Veening, J.-W., Arrebola, E., et al.
 564 (2007). The Iturin and Fengycin families of lipopeptides are key factors in antagonism of
 565 *Bacillus subtilis* toward *Podosphaera fusca*. *Molecular Plant-Microbe Interactions* 20(4),
 566 430-440. doi: 10.1094/mpmi-20-4-0430.

567 Sajid, M., Ahmad Khan, M.S., Singh Cameotra, S., and Safar Al-Thubiani, A. (2020). Biosurfactants:
 568 Potential applications as immunomodulator drugs. *Immunology Letters* 223, 71-77. doi:
 569 10.1016/j.imlet.2020.04.003.

570 Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J.H., Clément, C., et al. (2012).
 571 Rhamnolipids elicit defense responses and induce disease resistance against biotrophic,
 572 hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in
 573 *Arabidopsis* and highlight a central role for salicylic acid. *Plant Physiology* 160(3), 1630-
 574 1641. doi: 10.1104/pp.112.201913.

575 Sánchez, M., Aranda, F.J., Teruel, J.A., Espuny, M.J., Marqués, A., Manresa, Á., et al. (2010).
 576 Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid
 577 produced by *Pseudomonas aeruginosa*. *Journal of Colloid and Interface Science* 341(2), 240-
 578 247. doi: <https://doi.org/10.1016/j.jcis.2009.09.042>.

579 Sánchez, M., Aranda, F.J., Teruel, J.A., and Ortiz, A. (2009). Interaction of a bacterial dirhamnolipid
 580 with phosphatidylcholine membranes: a biophysical study. *Chemistry and Physics of Lipids*
 581 161(1), 51-55. doi: <https://doi.org/10.1016/j.chemphyslip.2009.06.145>.

582 Sánchez, M., Teruel, J.A., Espuny, M.J., Marqués, A., Aranda, F.J., Manresa, Á., et al. (2006).
 583 Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by
 584 a dirhamnolipid biosurfactant produced by *Pseudomonas aeruginosa*. *Chemistry and Physics of*
 585 *Lipids* 142(1), 118-127. doi: <https://doi.org/10.1016/j.chemphyslip.2006.04.001>.

586 Sathi Reddy, K., Yahya Khan, M., Archana, K., Gopal Reddy, M., and Hameeda, B. (2016).
 587 Utilization of mango kernel oil for the rhamnolipid production by *Pseudomonas aeruginosa*
 588 DR1 towards its application as biocontrol agent. *Bioresource Technology* 221, 291-299. doi:
 589 10.1016/j.biortech.2016.09.041.

590 Schellenberger, R., Touchard, M., Clement, C., Baillieul, F., Cordelier, S., Crouzet, J., et al. (2019).
 591 Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the
 592 frontline. *Molecular Plant Pathology* 20(11), 1602-1616. doi: 10.1111/mpp.12857.

593 Sen, S., Borah, S.N., Bora, A., and Deka, S. (2017). Production, characterization, and antifungal
 594 activity of a biosurfactant produced by *Rhodotorula babjevae* YS3. *Microbial Cell Factories*
 595 16(1), 95. doi: 10.1186/s12934-017-0711-z.

596 Sha, R., Jiang, L., Meng, Q., Zhang, G., and Song, Z. (2012). Producing cell-free culture broth of
 597 rhamnolipids as a cost-effective fungicide against plant pathogens. *Journal of Basic*
 598 *Microbiology* 52(4), 458-466. doi: 10.1002/jobm.201100295.

599 Sha, R., and Meng, Q. (2016). Antifungal activity of rhamnolipids against dimorphic fungi. *The*
 600 *Journal of General and Applied Microbiology* 62(5), 233-239. doi:
 601 10.2323/jgam.2016.04.004.

602 Sharma, A., Jansen, R., Nimtz, M., Johri, B.N., and Wray, V. (2007a). Rhamnolipids from the
 603 rhizosphere bacterium *Pseudomonas* sp. GRP(3) that reduces damping-off disease in Chilli
 604 and tomato nurseries. *Journal of Natural Products* 70(6), 941-947. doi: 10.1021/np0700016.

605 Sharma, A., Wray, V., and Johri, B.N. (2007b). Rhizosphere *Pseudomonas* sp. strains reduce
 606 occurrence of pre- and post-emergence damping-off in chile and tomato in Central Himalayan
 607 region. *Archives of Microbiology* 187(4), 321-335. doi: 10.1007/s00203-006-0197-2.

608 Singh, P., and Cameotra, S.S. (2004). Potential applications of microbial surfactants in biomedical
 609 sciences. *Trends in Biotechnology* 22(3), 142-146. doi: 10.1016/j.tibtech.2004.01.010.

610 Stanghellini, M.E., and Miller, R.M. (1997). Biosurfactants : their identity and potential efficacy in
 611 the biological control of zoosporic plant pathogen. *Plant disease* 81(1), 4-12.

612 Straight, P.D., Willey, J.M., and Kolter, R. (2006). Interactions between *Streptomyces coelicolor* and
 613 *Bacillus subtilis*: Role of Surfactants in Raising Aerial Structures. *Journal of Bacteriology*
 614 188(13), 4918-4925. doi: 10.1128/jb.00162-06.

615 Syed Ab Rahman, S.F., Singh, E., Pieterse, C.M.J., and Schenk, P.M. (2018). Emerging microbial
 616 biocontrol strategies for plant pathogens. *Plant Science* 267, 102-111. doi:
 617 10.1016/j.plantsci.2017.11.012.

618 Takemoto, J., Bensaci, M., De Lucca, A., Cleveland, T., Gandhi, N., and V, P.S. (2010). Inhibition of
 619 fungi from diseased grapeby syringomycin E-rhamnolipid mixture. *American Journal of*
 620 *Enology and Viticulture* 61, 120-124.

621 Tao, Y., Bie, X.-m., Lv, F.-x., Zhao, H.-z., and Lu, Z.-x. (2011). Antifungal activity and mechanism
 622 of fengycin in the presence and absence of commercial surfactin against *Rhizopus stolonifer*.
 623 *The Journal of Microbiology* 49(1), 146-150. doi: 10.1007/s12275-011-0171-9.

624 Tran, H., Ficke, A., Asiimwe, T., Hofte, M., and Raaijmakers, J.M. (2007). Role of the cyclic
 625 lipopeptide masetolide A in biological control of *Phytophthora infestans* and in colonization
 626 of tomato plants by *Pseudomonas fluorescens*. *New Phytologist* 175(4), 731-742.

627 Varnier, A.L., Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F., et al.
 628 (2009). Bacterial rhamnolipids are novel MAMPs conferring resistance to *Botrytis cinerea* in
 629 grapevine. *Plant, Cell & Environment* 32(2), 178-193. doi: PCE1911 [pii]

630 10.1111/j.1365-3040.2008.01911.x.

631 Vatsa, P., Sanchez, L., Clément, C., Baillieul, F., and Dorey, S. (2010). Rhamnolipid biosurfactants
 632 as new players in animal and plant defense against microbes. *International Journal of*
 633 *Molecular Sciences* 11, 5095-5108.

634 Waewthongrak, W., Leelasuphakul, W., and McCollum, G. (2014). Cyclic Lipopeptides from
635 *Bacillus subtilis* ABS-S14 elicit defense-related gene expression in citrus fruit. *PLoS one*
636 9(10), e109386-e109386. doi: 10.1371/journal.pone.0109386.

637 Wise, C., Falardeau, J., Hagberg, I., and Avis, T.J. (2014). Cellular Lipid Composition Affects
638 Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by *Bacillus*
639 *subtilis* Strain CU12. *Phytopathology* 104(10), 1036-1041. doi: 10.1094/phyto-12-13-0336-r.

640 Wu, L., Huang, Z., Li, X., Ma, L., Gu, Q., Wu, H., et al. (2018). Stomatal Closure and SA-, JA/ET-
641 Signaling Pathways Are Essential for *Bacillus amyloliquefaciens* FZB42 to Restrict Leaf
642 Disease Caused by *Phytophthora nicotiana* in *Nicotiana benthamiana*. *Frontiers in*
643 *Microbiology* 9(847). doi: 10.3389/fmicb.2018.00847.

644 Xiu, P., Liu, R., Zhang, D., and Sun, C. (2017). Pumilacidin-Like Lipopeptides Derived from Marine
645 Bacterium *Bacillus* sp. Strain 176 Suppress the Motility of *Vibrio alginolyticus*. *Applied and*
646 *Environmental Microbiology* 83(12), e00450-00417. doi: 10.1128/aem.00450-17.

647 Yamamoto, S., Shiraishi, S., and Suzuki, S. (2015). Are cyclic lipopeptides produced by *Bacillus*
648 *amyloliquefaciens* S13-3 responsible for the plant defence response in strawberry against
649 *Colletotrichum gloeosporioides*? *Letters in Applied Microbiology* 60(4), 379-386. doi:
650 10.1111/lam.12382.

651 Yan, F., Xu, S., Chen, Y., and Zheng, X. (2014). Effect of rhamnolipids on *Rhodotorula glutinis*
652 biocontrol of *Alternaria alternata* infection in cherry tomato fruit. *Postharvest Biology and*
653 *Technology* 97, 32-35. doi: <https://doi.org/10.1016/j.postharvbio.2014.05.017>.

654 Yan, F., Xu, S., Guo, J., Chen, Q., Meng, Q., and Zheng, X. (2015). Biocontrol of post-harvest
655 *Alternaria alternata* decay of cherry tomatoes with rhamnolipids and possible mechanisms of
656 action. *Journal of the Science of Food Agriculture* 95(7), 1469-1474. doi: 10.1002/jsfa.6845.

657 Yoo, D.S., Lee, B.S., and Kim, E.K. (2005). Characteristics of microbial biosurfactant as an
658 antifungal agent against plant pathogenic fungus. *Journal of Microbiology and Biotechnology*
659 15(6), 1164-1169.

660 Yoshida, S., Koitabashi, M., Nakamura, J., Fukuoka, T., Sakai, H., Abe, M., et al. (2015). Effects of
661 biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and
662 infection behaviours of plant pathogenic fungi. *Journal of Applied Microbiology* 119(1), 215-
663 224. doi: 10.1111/jam.12832.

664 Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F.M., de Vicente, A., and Pérez-García, A.
665 (2011). The Iturin-like Lipopeptides Are Essential Components in the Biological Control
666 Arsenal of *Bacillus subtilis* Against Bacterial Diseases of Cucurbits. *Molecular Plant-Microbe Interactions* 24(12), 1540-1552. doi: 10.1094/mpmi-06-11-0162.

668

669

670

671 **Figure and Table Legends**

672 **Figure 1. Schematic representation of dual effects of rhamnolipids and lipopeptides: 673 antimicrobial activities and plant defense induction.** mc-3-OH-acyl building block of 674 rhamnolipids is perceived by plant through the LORE receptor ①; Rhamnolipid could be sensed 675 through their direct insertion in plasma membrane ②. Recognition of rhamnolipids leads to early 676 signalling events like ion fluxes (Ca^{2+}), reactive oxygen species production (H_2O_2) and MAPK 677 phosphorylation cascade ③. These early responses trigger defense gene expression, probably through 678 activation of transcription factors (TF) and hormonal signaling pathways ④. This leads to defense 679 mechanisms like cell wall reinforcement and PR protein accumulation ⑤ triggering the resistance to 680 the microbes ⑥. Plant immunity due to lipopeptides does not involve a protein receptor and rely on 681 interaction between lipopeptides and the plant membrane ⑦. Both rhamnolipids and lipopeptides can 682 also have direct antimicrobial effects through direct insertion into the microbial plasma membrane 683 ⑧. These insertions trigger loss of cell morphology leading to pore formation ⑨. The pore formation 684 causes cellular component leakage triggering microbial cell death ⑩. Cell death due to lipopeptides 685 can also be indirectly due to the inhibition or activation of microbial cell functions ⑪.

686

687

Table 1: Anti-phytopathogenic properties of rhamnolipids

Composition	Source organism	Organism affected	Activity/Effect	References
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀	<i>Pseudomonas aeruginosa</i>	<i>Phytophthora capsici</i> , <i>Pythium aphanidermatum</i> , <i>Plasmopara lactucae-radicis</i>	Zoospore lysis	(Stanghellini and Miller, 1997)
Rha-Rha-C ₁₀ -C ₁₀	<i>Pseudomonas aeruginosa</i> B5	<i>Cercospora kikuchii</i> , <i>Cladosporium cucumerinum</i> , <i>Colletotrichum orbiculare</i> , <i>Cylindrocarpon destructans</i> , <i>Magnaporthe grisea</i> , <i>Phytophthora capsici</i>	Zoospore lysis, spore germination and hyphal growth inhibition	(Kim et al., 2000)
Rha-Rha-C ₈ -C ₁₀ , Rha-C ₁₀ -C ₈ /Rha-C ₈ -C ₁₀ , Rha-Rha-C ₈ -C _{12:1} , Rha-Rha-C ₁₀ -C ₁₀ , Rha-Rha-C ₁₀ -C _{12:1} , Rha-C ₁₀ -C ₁₀ , Rha-Rha-C ₁₀ -C ₁₂ /Rha-Rha-C ₁₂ -C ₁₀ , Rha-C ₁₀ -C _{12:1} /Rha-C _{12:1} -C ₁₀ , Rha-Rha-C _{12:1} -C ₁₂ , Rha-Rha-C ₁₀ -C _{14:1} , Rha-C ₁₀ -C ₁₂ /Rha-C ₁₂ -C ₁₀	<i>Pseudomonas aeruginosa</i> 47T2	<i>Penicillium funiculosum</i> , <i>Fusarium solani</i> , <i>Botrytis cinerea</i> , <i>Rhizoctonia solani</i>	Growth inhibition (MIC)	(Haba et al., 2003)
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀ , Rha-Rha-C ₁₀ -C _{12:1} , Rha-C ₁₀ -C _{12:1} , Rha-Rha-C ₁₀ -C ₁₂ , Rha-C ₁₀ -C ₁₂	<i>Pseudomonas aeruginosa</i> LBI	<i>Penicillium funiculosum</i> , <i>Alternaria alternata</i>	Growth inhibition (MIC)	(Benincasa et al., 2004)
Biosurfactant PRO1 (formulation of 25% RLs) Plant support (the Netherlands)	<i>Pseudomonas aeruginosa</i>	<i>Phytophthora cryptogea</i>	Zoospore lysis, reduction of sporangia formation	(De Jonghe et al., 2005)
Mono- and di-rhamnolipids	<i>Pseudomonas aeruginosa</i> IGB 83	<i>Phytophthora capsici</i> , <i>Phytophthora nicotianae</i> , <i>Phytophthora cactorum</i> , <i>Phytophthora infestans</i> , <i>Pythium aphanidermatum</i> , <i>Pythium ultimum</i>	Motility inhibition, zoospore lysis, mycelial growth inhibition	(Yoo et al., 2005)
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀ (Jeneil Biosurfactant Company JBR599)	<i>Pseudomonas aeruginosa</i>	<i>Pythium myriotylum</i>	Mycelial growth inhibition	(Perneel et al., 2008)

Biosurfactant PRO1 (formulation of 25% RLs) Plant support (the Netherlands)				
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀ (Jeneil Biosurfactant Company JBR599)	<i>Pseudomonas aeruginosa</i>	<i>Botrytis cinerea</i>	Spore germination and mycelial growth inhibition	(Varnier et al., 2009; Monnier et al., 2018)
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀	<i>Pseudomonas aeruginosa</i> ZJU211	<i>Phytophthora infestans</i> , <i>Phytophthora capsici</i> , <i>Botrytis cinerea</i> , <i>Fusarium graminearum</i> , <i>Fusarium oxysporum</i>	Mycelial growth Inhibition	(Sha et al., 2012)
Rha-C _{8:1} , Rha-C ₁₀ -C _{10:1} , Rha-C _{10:1} -C ₁₀ , Rha-Rha- C ₁₀ -C _{12:1} , Rha-Rha-C _{12:1} - C ₁₀	<i>Pseudomonas aeruginosa</i> DS9	<i>Fusarium sacchari</i>	Mycelial growth Inhibition	(Goswami et al., 2014)
Mono- and di- rhamnolipids	<i>Pseudomonas aeruginosa</i> ZJU-211	<i>Alternaria alternata</i>	Spore germination and mycelial growth inhibition	(Yan et al., 2014; Yan et al., 2015)
Rha-C ₁₀ -C ₁₀ , Rha-Rha- C ₁₀ -C ₈ Other Rha or Rha- Rha : -C ₁₀ -C ₁₀ , -C ₈ -C ₁₀ , - C ₁₀ -C ₁₂ , -C ₁₂ -C ₁₂ , -C ₁₄ -C ₁₀ , -C ₁₀ -C ₁₆	<i>Serratia rubidaea</i> SNAU02	<i>Fusarium oxysporum</i> , <i>Colletotrichum gloeosporioides</i>	Mycelial growth Inhibition	(Nalini and Parthasarathi, 2014)
Rha-C _{9:2} , Rha-C ₁₀ , Rha- C _{12:3} , Rha-C ₈ -C ₈ , Rha-C ₁₀ - C _{10:1} , Rha-C _{10:1} -C ₁₀ , Rha- C ₁₀ -C ₈ , Rha-C ₈ -C ₁₀ , Rha- Rha-C ₁₀ -C ₁₂ , Rha-Rha- C ₁₂ -C ₁₀	<i>Pseudomonas aeruginosa</i> SS14	<i>Fusarium oxysporum</i> f. sp. <i>pisi</i>	Fungal growth inhibition	(Borah et al., 2015)
Rha-C ₁₀ -C ₁₀ , Rha-Rha- C ₁₀ -C ₁₀	<i>Pseudomonas aeruginosa</i> KVD- HM52	<i>Fusarium oxysporum</i>	Mycelial growth and fungal biomass accumulation inhibition	(Deepika et al., 2015)
Rha-C _{8:2} , Rha-C _{8:1} , Rha- C ₁₀ , Rha-C _{12:1} , Rha-Rha- C _{10:1} , Rha-C ₁₀ -C _{10:1} /Rha- C _{10:1} -C ₁₀	<i>Pseudomonas aeruginosa</i> DS9	<i>Colletotrichum falcatum</i>	Spore germination and mycelial growth inhibition	(Goswami et al., 2015)
Rha-C ₈ , Rha-C ₁₀ -C ₁₀	<i>Pseudomonas aeruginosa</i> SS14	<i>Fusarium verticillioides</i>	Spore germination and mycelial growth inhibition	(Borah et al., 2016)
Rha-Rha-C ₁₀ , Rha-Rha-C ₈ -	<i>Pseudomonas</i>	<i>Sclerotium rolfsii</i> , <i>Fusarium oxysporum</i> ,	Mycelial growth	(Sathi Reddy et

C ₁₀ , Rha-Rha-C ₁₀ -C ₁₀	<i>aeruginosa</i> DR1	<i>Phytophthora</i> <i>nicotianae</i> , <i>Macrophomina</i> <i>phaseolina</i>	inhibition	al., 2016)
Rha-Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C ₁₀	<i>Pseudomonas</i> <i>aeruginosa</i> ZJU211	<i>Verticillium dahliae</i>	Spore germination and mycelial growth inhibition	(Sha and Meng, 2016)
Rha-C ₁₀ -C ₈ , Rha-C ₁₀ -C ₁₀ , Rha-C ₁₀ -C _{12:1} , Rha-C ₁₀ - C ₁₂ , Rha-Rha-C ₈ -C ₁₀ , Rha- Rha-C ₁₀ -C ₁₀ , Rha-Rha- C ₁₀ -C _{12:1} , Rha-Rha-C ₁₀ -C ₁₂	<i>Pseudomonas</i> <i>aeruginosa</i> #112	<i>Aspergillus carbonarius</i>	Mycelial growth inhibition	(Rodrigues et al., 2017)
Semipurified rhamnolipid mixture (RL90-A, AGAE Technologies, Corvalis, USA) and RL90-N, NatSurFact, Fairfax, USA)	<i>Pseudomonas</i> <i>aeruginosa</i>	<i>Leptosphaeria maculans</i>	Mycelial growth inhibition	(Monnier et al., 2020)

689

690

691

692

693