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Abstract

Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of
microorganisms including fungi and bacteria. Pseudomonas, Burkholderia and Bacillus species are
known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial
applications. Recently, these compounds have been studied in a context of plant-microbe
interactions. This mini-review describes the direct antimicrobial activities of these compounds
against plant pathogens. We also provide the current knowledge on how rhamnolipids and
lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given
their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of
these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.

Introduction

Plant pathogens cause significant agricultural damages and up to 30% of crops are lost before
or after harvest to plant diseases leading to huge economic losses (Jones et al., 2016). Diseases and
pests are therefore major problems for sustainable agriculture in the world. Chemical pesticides are
largely used to control plant disease worldwide (Popp et al., 2013). However, chemical pesticides can
be detrimental to human and environmental health and therefore, development and optimization of
alternative strategies to reduce their utilization for crop protection is becoming a necessity.
Biocontrol is a promising strategy based on the use of organisms that decrease disease pressure by
competing with the pathogen for space and nutrients, by inducing the plant’s natural defense system,
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and/or by the production of antimicrobial substances (Berg et al., 2017; Bonanomi et al., 2018; Syed
Ab Rahman et al., 2018). In addition, natural, ecofriendly and biodegradable compounds isolated
from (micro)organisms can also be part of a biocontrol strategy. These compounds can act directly
onto the pathogen via antimicrobial properties or by stimulating the plant immune system to prime
plant protection against disease (Delaunois et al., 2014; Bardin et al., 2015; Keswani et al., 2019).
Molecules from microbial origin stimulating the plant immune system are called invasion patterns or
elicitors and are highly diverse both in nature and origins (Vatsa et al., 2010; Delaunois et al., 2014;
Burketova et al., 2015; Schellenberger et al., 2019).

Application of biosurfactants like mannosylerythritol lipids (MEL), trehalose dimycolate
(TDM), trehalolipids, sophorolipids, rhamnolipids or lipopeptides have been studied since decades in
biomedical sciences especially for their antimicrobial properties and as modulators of human innate
immunity (for extensive reviews see (Singh and Cameotra, 2004; Banat et al., 2010; Vatsa et al.,
2010; Naughton et al., 2019; Coelho et al., 2020; Jahan et al., 2020; Sajid et al., 2020). Some of these
microbial biosurfactants exhibit antimicrobial properties that are effective against a large panel of
plant pathogens (Mnif and Ghribi, 2016; Penha et al., 2020). In addition, rhamnolipids and
lipopeptides have recently been shown to stimulate the plant immune system conferring a better
resistance to fungal and bacterial pathogens (Raaijmakers et al., 2010; Vatsa et al., 2010;
Schellenberger et al., 2019). In this review, we will provide current knowledge and recent advances
on the role of biosurfactants in plant protection. We will focus on rhamnolipids and lipopeptides that
have been the most extensively studied in this context.

Biosurfactants as biopesticides
Rhamnolipids are efficient bio-fungicides

Among classical glycolipidic biosurfactants, sophorolipids, MEL and cellobiose lipids have
marginally been studied for their antimicrobial properties towards plant pathogens (Yoshida et al.,
2015; Mnif and Ghribi, 2016; Sen et al., 2017; Chen et al., 2020; Penha et al., 2020). Rhamnolipids
are glycolipids produced by various bacterial species including some Pseudomonas sp. and
Burkholderia sp. (Abdel-Mawgoud et al., 2010). Whereas no direct or robust evidences have been
reported for rhamnolipid antibacterial or antiviral activities against plant pathogens, a large number
of studies described their antifungal activities on pathogens affecting crops. These activities were
mainly targeted to fungi and oomycetes including Botrytis sp., Rhizoctonia sp., Fusarium sp.,
Alternaria sp., Pythium sp., Phytophthora sp. or Plasmopara sp. species (Table 1). Because of their
amphiphilic nature, glycolipids should be able to interact directly with plasma membranes (Otzen,
2017). It was thus proposed that the mode of action of rhamnolipids against zoospore-producing
plant pathogens could be a direct lysis of zoospores via the intercalation of the glycolipids within
plasma membranes which are not protected by a cell wall (Stanghellini and Miller, 1997).
Rhamnolipids could also affect mycelial cells resulting in their destabilization or lysis. Rhamnolipid
partition into membranes strongly depends on lipid composition (Aranda et al., 2007). It was shown
that purified mono and di-rhamnolipids are able to intercalate into phosphatidylcholine and
phosphatidylethanolamine bilayers, notably altering their packing (Ortiz et al., 2006; Sanchez et al.,
2006; Sanchez et al., 2009; Abbasi et al., 2012; Abbasi et al., 2013). These insertions thus produce
structural perturbations, which might affect the function of the membranes. These compounds also
alter the physicochemical properties of the bilayer and disturb the hydration status of the water/lipid
interface. Depending on the lipid composition of the membrane and on their concentration,
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rhamnolipids are also able to permeabilize membranes (Sanchez et al., 2010) that could result in their
lysis.

Lipopeptides as antimicrobial agents

Cyclic lipopeptides (CLPs) represent a class of biosurfactant widely produced by various
bacterial species referred as plant-beneficial bacteria. Among them, Bacillus and Pseudomonas are
exploited as biocontrol agents and are also the best known for the production of a range of
structurally distinct and multifunctional CLPs with strong biological activities related to plant
protection (Raaijmakers et al., 2010). Bacterial CLPs are powerful biosurfactants retaining strong
destabilizing activities on biological membranes. Their antimicrobial activity is well documented in a
context of biocontrol via direct inhibition of phytopathogens. In vitro-based assays using purified
CLPs combined or not with loss of function mutants of natural producers have highlighted the
extremely wide range of fungal and oomycete plant pathogens that are affected by bacterial CLPs
such as fengycins and iturins (see recent reviews (Caulier et al., 2019; Rabbee et al., 2019) for
Bacillus and (Geudens and Martins, 2018; Gotze and Stallforth, 2020) for Pseudomonas CLPs,
respectively). Many studies indicate that CLP activity is linked to their capacity to compromise the
fungal cell membrane stability, resulting in cytoplasm leakage and hyphae death or inhibition of
spore germination (Chitarra et al., 2003; Romero et al., 2007; Etchegaray et al., 2008; Pérez-Garcia et
al., 2011; Gong et al., 2015; Qian et al., 2016). However, the mechanistic basis of antifungal activity
may be more complex and, as for thamnolipids, the lipid composition of the targeted cell membrane
could play an essential role in the microbicidal activity (Grau et al., 1999; Tao et al., 2011; Wise et
al., 2014). Like other antimicrobial peptides, CLPs are not only membrane disruptive but can also
directly or indirectly act on intracellular targets and alter fungal cell functions (Latoud et al., 1987; Qi
et al., 2010).

Antibacterial activity has also been occasionally reported for Bacillus CLPs such as iturin A,
bacillomycin and locillomycins towards several plant pathogens of agronomic importance (Zeriouh
et al., 2011; Luo et al., 2015; Cao et al., 2018). However, there are globally few convincing evidences
for a direct bactericidal effect of Bacillus CLPs and surfactin in particular on phytopathogens or soil-
borne bacterial attackers. The precise antibiotic mechanistic of Bacillus CLPs against bacterial
phytopathogens remains unclear even if a direct interaction with the cellular membrane of the target
is also obvious (Zeriouh et al., 2011; Gao et al., 2017). However, in some instances, the inhibitory
effect of some Bacillus CLPs such as surfactin (or related lichenysin and pumilacidin) is not related
to a direct effect on target cell viability but rather due to some interference with key developmental
processes of the pathogen such as efficient biofilm formation by Pseudomonas syringae and
Ralstonia solanacearum (Bais et al., 2004; Chen et al., 2013; Xiu et al., 2017) or inhibition of aerial
hyphal development of Streptomyces coelicolor (Straight et al., 2006; Hoefler et al., 2012).

Stimulation of plant immunity by biosurfactants

Plants have developed complex defense mechanisms leading to enhance resistance to
phytopathogens. After microbial perception, early signaling events are set up including ion fluxes,
reactive oxygen species (ROS) accumulation and phosphorylation cascades (Garcia-Brugger et al.,
2006; Bigeard et al., 2015). These early signaling and the activation of an intricate network of
phytohormones, such as salicylic acid or jasmonic acid, regulate late defense-related responses

3
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(Pieterse et al., 2012) including synthesis of antimicrobial metabolites and cell wall reinforcement.
These defense responses collectively allow local plant immunity (Boller and Felix, 2009). In
addition, microbial perception triggers systemic responses that are effective against a large panel of
microorganisms in the whole plant (Fu and Dong, 2013; Pieterse et al., 2014). Activation of the plant
immune system involves invasion patterns (IPs) molecules also known as elicitors which can
originate from or be produced by the microbe (Schellenberger et al., 2019).

Rhamnolipids trigger local resistance against plant pathogens

Whereas most studies on glycolipid biosurfactants were focused on their antimicrobial and
antifouling activities, it was recently discovered that rhamnolipids may also stimulate plant innate
immunity (Vatsa et al., 2010) (Figure 1). Interestingly, despite their antimicrobial and mammalian
immunomodulatory properties, no study on sophorolipids, trehalolipids, MELs or cellobiose lipids, to
our knowledge, described their potential role in the activation of plant defense responses so far.
Following plant sensing, rhamnolipids trigger early signaling events like accumulation of ROS in
grapevine and Brassica napus (Varnier et al., 2009; Monnier et al., 2018) as well as a calcium influx
and a phosphorylation cascade in grapevine (Varnier et al., 2009). Callose deposition, hormone
production, defense gene activation and a hypersensitive reaction-like response are also hallmarks of
rhamnolipid-triggered immunity in Brassicaceae and grapevine (Varnier et al., 2009; Sanchez et al.,
2012; Monnier et al., 2018; Monnier et al., 2020). It was demonstrated in Arabidopsis that
rhamnolipid-mediated local resistance to Botrytis cinerea, Hyaloperonospora arabidopsidis or
Pseudomonas syringae pv. tomato (Pst) involves different signaling pathways that depend on the
type of pathogen (Sanchez et al., 2012). In addition, rhamnolipid potentiate defense responses
induced by other elicitors like chitosan. The immune response triggered by rhamnolipids also
participates in local resistance against B. cinerea and the hemibiotrophic fungus Leptosphaeria
maculans in B. napus (Monnier et al., 2018; Monnier et al., 2020). A large range of rhamnolipid
concentrations from 0.005 to 1 mg/mL have been used to induce immunity on these various plant
species (Varnier et al., 2009; Sanchez et al., 2012; Monnier et al., 2018; Monnier et al., 2020).
Synthetic biosurfactants derived from rhamnolipid structure are also elicitors. For instance, synthetic
rhamnolipid bolaforms, composed of two rhamnoses separated by a fatty acid chain, trigger an
immune response in Arabidopsis that varies according to fatty acid chain length (Luzuriaga-Loaiza et
al., 2018). In addition, RL harboring carboxylic acid (Ac-RL) and methyl (Alk-RL) induce ROS
production in this plant (Nasir et al., 2017).

The way by which rhamnolipids are perceived by plant cells still remains unknown. Given
their amphiphilic nature, it is postulated that they could interact with plant membrane lipids (Sanchez
et al., 2012; Schellenberger et al., 2019). Recently it has been demonstrated that natural rhamnolipids
fit into plant lipid-based membrane models and are located near the lipid phosphate group of the
phospholipid bilayers, nearby phospholipid glycerol backbones (Monnier et al., 2019). Rhamnolipid
insertion inside the lipid bilayer does not strongly affect lipid dynamics but the nature of the
phytosterols could influence the effect of the glycolipids on plant plasma membrane destabilization.
These subtle changes in lipid dynamics could be linked with plant defense induction (Monnier et al.,
2019). Interestingly, whereas no receptor for thamnolipid perception has been identified so far, the
mc-3-OH-acyl building block of rhamnolipids is sensed by the lectin S-domain-1 receptor—like
kinase LORE (Kutschera et al., 2019) (Figure 1).
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For some studies, it is not demonstrated whether rhamnolipid-triggered protection is driven
by activation of plant defense responses and/or antimicrobial properties. For instance, treatments of
pepper plants with rhamnolipids result in an enhanced protection to Phytophthora blight disease and
also prevent the development of Colletotrichum orbiculare infection on leaves of cucumber plants
(Kim et al., 2000). Rhamnolipids significantly decrease the incidence of water-borne damping-off
disease by Phytophthora sp. and Pythium sp. (Yoo et al., 2005). Similar results were obtained in field
trials on chili pepper and tomato (Sharma et al., 2007a; Sharma et al., 2007b). Using bacterial
mutants, it was demonstrated that phenazine and rhamnolipids interact in the biological control of
soil-borne diseases caused by Pythium sp. (Perneel et al., 2008). Syringomycin E and rhamnolipids
can also act synergistically to control pathogenic and opportunistic fungi recovered from diseased
grape (Takemoto et al., 2010). The control of postharvest phytopathogens on seeds or fruits for a
better conservation is often related to antimicrobial activities. But we cannot exclude that protection
could also be due to plant defense responses (Borah et al., 2016). When applied alone, rhamnolipids
induce antioxidative reactions in cherry tomato fruit, leading to a significant reduction of fungal
disease (Yan et al., 2015). When applied in combination with the biocontrol yeast agent Rhodotorula
glutinis, a synergistic inhibitory effect on Alternaria alternata infection could be observed in cherry
tomato fruit, leading to an efficient protection (Yan et al., 2014). This protection is associated with a
higher induction of defense-related enzymes and the accumulation of antimicrobial metabolites.

Lipopeptides as powerful inducers of plant systemic resistance

Several studies have reported the involvement of Bacillus CLPs in plant immunity induction
on various pathosystems. The potential of fengycin and surfactin CLPs to trigger plant systemic
resistance was first shown on bean and tomato plants. When applied as pure compounds at
micromolar concentrations, surfactin and to a lower extend fengycin induced significant disease
reduction in bean and tomato infected with B. cinerea (Ongena et al., 2007). More recently, a study
performed with a large range of natural Bacillus isolates strengthened the role of surfactin as ISR
(induced systemic resistance) inducer since strong correlation was observed between defense-
inducing activity and the amount of surfactin produced by the different strains (Cawoy et al., 2014).
In the same way, B. velezensis FZB42 mutant strains unable to synthesize surfactin are impaired in
their ISR to Rhizoctonia solani in lettuce (Chowdhury et al., 2015). Further studies allowed enlarging
the ISR elicitor role of surfactin to other plants. For example, purified surfactin was shown to
increase resistance against the cucurbit powdery mildew in melon plants (Garcia-Gutiérrez et al.,
2013). In the pathosystem citrus fruit/Penicillium digitatum, surfactin stimulates defense responses
involved in generating signal molecules for ISR activation (Waewthongrak et al., 2014). This
lipopeptide activates a plant innate response effective against Magnaporthe oryzae in perennial
ryegrass (Rahman et al., 2015) or Plasmopara viticola in grapevine (Li et al., 2019). It also reduces
infection by the rhizomania disease vector Polymyxa betae in sugar beet (Desoignies et al., 2013) or
by Colletotrichum gloeosporioides in strawberry leaves (Yamamoto et al., 2015). Finally, a recent
study showed that Sclerotium rolfsii disease incidence was strongly reduced in Arachis hypogaea
when pretreated with surfactin (Rodriguez et al., 2018). Interestingly, CLPs like surfactin do not
globally provoke a strong plant defensive response associated with major genetic reprogramming and
fitness cost but rather act by priming host defenses to trigger systemic resistance (Ongena et al.,
2007; Jourdan et al., 2009; Debois et al., 2015). Induction of plant defenses by CLPs of the iturin
group has also been occasionally reported. Iturin A was shown to have a similar role as surfactin in
strawberry leaves (Yamamoto et al., 2015) and also acted as an inducer of plant defense gene
expression in cotton plants upon Verticillium dahliae attack (Han et al., 2015). Mycosubtilin is the
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most efficient lipopeptide inducing an immune response in grapevine (Farace et al., 2015). Compared
to surfactin, bacillomycin D produced by B. velezensis SQR9 has a comparable efficacy in
Arabidopsis ISR elicitation to prevent infection by P. syringae or B. cinerea (Wu et al., 2018). In
wheat plants, resistance towards Zymoseptoria tritici, was activated by pure surfactin used at
concentrations ranging from 1 to 100 uM upon foliar application (Le Mire et al., 2018). Some CLPs
synthesized by Pseudomonas sp. also display consistent ISR-triggering activity. It was first
demonstrated that massetolide A produced by Pseudomonas fluorescens strain SS101 retains ISR-
eliciting activity in tomato plants for the control of Phytophthora infestans (Tran et al., 2007).
Pseudomonas sp. strain CMR12a is a soil isolate retaining high biocontrol potential against R. solani
relying mainly on the interplay between two different lipopeptides (sessilin and orfamide) and
phenazine for inducing plant immunity (D'Aes et al., 2011; D'aes et al., 2014). These CLPs were also
active at protecting Brassica chinensis against R. solani (Olorunleke et al., 2015). In monocots, such
as rice, orfamide and other Pseudomonas CLPs such as WLIP, lokisin and entolysin, successfully
induced resistance towards C. miyabeanus or M. oryzae (Ma et al., 2016; Ma et al., 2017; Omoboye
et al., 2019).

Up to now, how lipopeptides act and are recognized by plants cells to activate ISR remains
unclear. CLPs are in most instances only active in micromolar concentrations, and defenses are more
intensively induced at the highest surfactin doses. This suggests that the recognition mechanism at
the plant cell surface should be of quite low affinity in contrast to other elicitors (Jourdan et al.,
2009). Such a low specificity may be explained by the fact that CLPs like surfactin are not perceived
by a protein receptor, but rather involve a process driven by an uncommon pathway based on
interaction with the lipid bilayer fraction of plant plasma membranes (Henry et al., 2011). This is
supported by some studies revealing that CLP structure plays an important role for the ISR eliciting
activity. Both the fatty acid chain length, the cyclic conformation of the molecule and amino acid
positions in the peptide chain impact the eliciting potential of surfactin in tobacco cells (Jourdan et
al., 2009; Henry et al., 2011). The activation of defense genes in Arabidopsis upon iturin A foliar
treatment was also dependent on the structure of the molecule, i.e. cyclization and/or nature of the
fatty acid chain (Kawagoe et al., 2015). As for rhamnolipids, the hypothesis is that lipopeptides have
the ability to create some disturbance in the plant plasma membrane and could consequently activate
a cascade of molecular events leading to the activation of defense mechanisms (Schellenberger et al.,
2019) (figure 1).

Conclusion

Biosurfactants, produced by bacteria, yeast, and fungi, are promising molecules for a wide variety of
applications due to their potential to be commercially produced at large scales, their low toxicity and
high biodegradability. In this mini-review, we provided evidences about the potential of thamnolipids
and lipopeptides for plant protection in a context of sustained agriculture. These molecules have
similar dual effects by protecting plants through antimicrobial properties and stimulation of local
and/or systemic plant immunity. These singular properties are essential for the efficiency of these
biopesticides. Although numerous elicitors are perceived by plasma membrane receptors, recent
studies on amphiphilic biosurfactants such as rhamnolipids or lipopeptides suggest that are sensed by
an uncommon way involving lipids in the bilayer of the plant plasma membrane that could explain
their singular elicitor activity. To better understand the mechanisms of action of biosurfactants,
experiments or trials need to be realized not only on mixture but also on highly purified molecules in
the future. Nevertheless, several obstacles to the development of rhamnolipid and lipopeptide
applications still remain. Biosurfactant costs, their efficacies in the field and purity of compounds
have to be improved to allow their use at a higher degree in crop protection. In this respect,
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combination of biosurfactants should be considered to increase efficacy in field conditions. Finally,
given their interesting properties it is now time to really consider ecofriendly biosurfactants as
biocontrol solutions in integrated pest management.
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Figure and Table Legends

Figure 1. Schematic representation of dual effects of rhamnolipids and lipopeptides:
antimicrobial activities and plant defense induction. mc-3-OH-acyl building block of
rhamnolipids is perceived by plant through the LORE receptor ©; Rhamnolipid could be sensed
through their direct insertion in plasma membrane @. Recognition of rhamnolipids leads to early
signalling events like ion fluxes (Ca®"), reactive oxygen species production (H,0,) and MAPK
phosphorylation cascade ®. These early responses trigger defense gene expression, probably through
activation of transcription factors (TF) and hormonal signaling pathways @. This leads to defense
mechanisms like cell wall reinforcement and PR protein accumulation ® triggering the resistance to
the microbes ®. Plant immunity due to lipopeptides does not involve a protein receptor and rely on
interaction between lipopeptides and the plant membrane @. Both rhamnolipids and lipopeptides can
also have direct antimicrobial effects through direct insertion into the microbial plasma membrane
®. These insertions trigger loss of cell morphology leading to pore formation @. The pore formation
causes cellular component leakage triggering microbial cell death @. Cell death due to lipopeptides
can also be indirectly due to the inhibition or activation of microbial cell functions @.
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Table 1: Anti-phytopathogenic properties of rhamnolipids

Running Title

Composition

Source
organism

Organism
affected

Activity/Effect

References

Rha-Rha-Clo-Clo, Rha-
CIO'CIO

Pseudomonas
aeruginosa

Phytophthora capsici,
Pythium
aphanidermatum,
Plasmopara lactucae-
radicis

Zoospore lysis

(Stanghellini
and Miller,
1997)

Rha-Rha-Clo-Clo

Pseudomonas
aeruginosa B5

Cercospora kikuchii,
Cladosporium
cucumerinum,
Colletotrichum
orbiculare,
Cylindrocarpon
destructans,
Magnaporthe grisea,
Phytophthora capsici

Zoospore lysis,
spore germination
and hyphal growth
inhibition

(Kim et al.,
2000)

Rha-Rha-Cg-Clo, Rha-Clo-
Cg/Rha-Cg-Clo, Rha-Rha-
Cs-Cy2 .1, Rha-Rha-C,-C,
Rha-Rha-Clo-Clz 15 Rha-
Clo-clo, Rha-Rha-Clo—
Clz/Rha-Rha-Clz-Clo, Rha-
C10-Ci2./Rha-Cy;, 1-Cyy,
Rha-Rha-Clz :1-C12, Rha-
Rha-Cy-Cy4.1, Rha-C -
Clz/Rha-Clz-Clo

Pseudomonas
aeruginosa 4712

Penicillium funiculosum,
Fusarium solani, Botrytis
cinerea, Rhizoctonia
solani

Growth inhibition
(MIC)

(Haba et al.,
2003)

Rha-Rha-C 10-C 105 Rha-

Pseudomonas

Penicilium funiculosum,

Growth inhibition

(Benincasa et

C10-C1o, Rha-Rha-C - aeruginosa LBI Alternaria alternata (MIC) al., 2004)
Ci2:1, Rha-Cy-Cy2., Rha-

Rha-Clo-Clz, Rha-Cl()-Clz

Biosurfactant PRO1 Pseudomonas Phytophthora cryptogea Zoospore lysis, (De Jonghe et
(formulation of 25% RLs) aeruginosa reduction of al., 2005)
Plant support (the sporangia formation

Netherlands)

Mono- and di- Pseudomonas Phytophthora capsici, Motility inhibition, (Yoo et al.,
rhamnolipids aeruginosa 1GB 83 Phytophthora nicotianae, | zoospore lysis, 2005)

Phytophthora cactorum,

mycelial growth

Phytophthora infestans, inhibition

Pythium

aphanidermatum,

Pythium ultimum
Rha-Rha-C,(-Cy, Rha- Pseudomonas Pythium myriotylum Mycelial growth (Perneel et al.,
C10-Cio (Jeneil aeruginosa inhibition 2008)

Biosurfactant Company
JBR599)
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Biosurfactant PRO1
(formulation of 25% RLs)
Plant support (the
Netherlands)

Rha-Rha-C,(-Cy, Rha- Pseudomonas Botrytis cinerea Spore germination (Varnier et al.,
C10-Cip (Jeneil aeruginosa and mycelial growth | 2009; Monnier
Biosurfactant Company inhibition et al., 2018)
JBR599)
Rha-Rha-C,(-Cy, Rha- Pseudomonas Phytophthora infestans, Mycelial growth (Sha et al.,
C10-Cio aeruginosa ZJU211 | Phytophthora capsici, Inhibition 2012)

Botrytis cinerea,

Fusarium graminearum,

Fusarium oxysporum
Rha-Cg.;, Rha-Cy-Cyg.1, Pseudomonas Fusarium sacchari Mycelial growth (Goswami et
Rha-C.;-C}y, Rha-Rha- aeruginosa DS9 Inhibition al., 2014)
C10-Ci2.1, Rha-Rha-Cy.i-
Cio
Mono- and di- Pseudomonas Alternaria alternata Spore germination (Yanetal.,
rhamnolipids aeruginosa ZJU-211 and mycelial growth | 2014; Yan et

inhibition al., 2015)
Rha-C;y-C,o, Rha-Rha- Serratia rubidaea Fusarium oxysporum, Mycelial growth (Nalini and
C0-Cg Other Rha or Rha- SNAUO02 Colletotrichum Inhibition Parthasarathi,
Rha : -C-Cyy, -Cs-C), - gloeosporioides 2014)
Ci0-Ci2, -C12-Cia, -C14-Cio,
-Ci0-Cis
Rha-Cy.,, Rha-Cy, Rha- Pseudomonas Fusarium oxysporum f. Fungal growth (Borah et al.,
Ci23, Rha-Cg-Cg, Rha-C - | aeruginosa SS14 Sp. pisi inhibition 2015)
Cio:1, Rha-Cy.;-Cy, Rha-
Clo-Cg, Rha-Cg-Clo, Rha-
Rha-Clo-Clz, Rha-Rha-
Ci2-Cio
Rha-C;y-C,o, Rha-Rha- Pseudomonas Fusarium oxysporum Mycelial growth (Deepika et al.,
Ci10-Co aeruginosa KVD- and fungal biomass 2015)
HMS52 accumulation
inhibition

Rha-Cyg.,, Rha-Cg.;, Rha- Pseudomonas Colletotrichum falcatum Spore germination (Goswami et

C9, Rha-C,.;, Rha-Rha- aeruginosa DS9 and mycelial growth | al., 2015)

ClO:la Rha-Clo-Clo:l/Rha— inhibition

Ci0:1-Cio

Rha-Cg, Rha-C(-Cyy Pseudomonas Fusarium verticillioides Spore germination (Borah et al.,

aeruginosa SS14 and mycelial growth | 2016)

inhibition

Rha-Rha-C,y, Rha-Rha-Cg- | Pseudomonas Sclerotium rolfsii, Mycelial growth (Sathi Reddy et

Fusarium oxysporium,
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C9, Rha-Rha-C(-Cyy aeruginosa DR1 Phytophthora inhibition al., 2016)
nicotianae,
Macrophomina
phaseolina
Rha-Rha-C,(-Cy, Rha- Pseudomonas Verticillium dahliae Spore germination (Sha and
C10-Cio aeruginosa ZJU211 and mycelial growth | Meng, 2016)
inhibition
Rha-C(-Cg, Rha-C;(-Cy, Pseudomonas Aspergillus carbonarius Mycelial growth (Rodrigues et
Rha-Cy¢-Ci2:1, Rha-Cyo- aeruginosa #112 inhibition al., 2017)
C12= Rha-Rha-Cg-Clo, Rha-
Rha-Clo-Clo, Rha-Rha-
Ci0-Ci2.1, Rha-Rha-C,-Cy,
Semipurified thamnolipid | Pseudomonas Leptosphaeria maculans Mycelial growth (Monnier et al.,
mixture (RL90-A, AGAE aeruginosa inhibition 2020)

Technologies, Corvalis,
USA)

and RL90-N, NatSurFact,
Fairfax, USA)
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