Article (Scientific journals)
Towards a Hybrid Mass Sensing System by Combining a QCM Mass Sensor with a 3-DOF Mode Localized Coupled Resonator Stiffness Sensor
Wang, Yuan; Liu, H.; Wang, C. et al.
2021In IEEE Sensors Journal
Peer Reviewed verified by ORBi
 

Files


Full Text
2021- TOWARDS A HYBRID MASS SENSING.pdf
Publisher postprint (2.75 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Coupled resonator; Detectors; Mass sensing; Mode localization; Perturbation methods; QCM; Resonant frequency; Sensitivity; Sensor systems; Sensors; Vibrations; Atmospheric pressure; Crystal resonators; Electrostatic devices; Electrostatic force; Hybrid systems; Natural frequencies; Resonators; Stiffness; Liquid contact; Mass perturbation; Output signal; Resonance amplitudes; Resonant frequency shift; Vibration amplitude; Quartz crystal microbalances
Abstract :
[en] This paper describes a hybrid mass sensing system comprising a QCM (quartz crystal microbalance) mass sensor operating under atmospheric pressure and a 3-DOF mode localized coupled resonator operating in vacuum. Nanoparticles as consecutive mass perturbations are added onto the QCM, the output signals with respect to the amount of mass change are then being manipulated to generate electrostatic forces. Subsequently, the electrostatic forces act on the 3-DOF mode localized coupled resonator as external stiffness perturbations. The output metrics of the hybrid system were defined as: the resonant frequency shifts, vibration amplitude changes, and the changes in resonance amplitude ratio. Measured data was analyzed for these metrics and compared. This work demonstrated that the proposed hybrid mass sensing system attained a 2.5 × 106N(m∙kg)-1 mass to stiffness transduction factor, and has the potential to be employed as a direct liquid contact biochemical transducer. IEEE
Disciplines :
Electrical & electronics engineering
Author, co-author :
Wang, Yuan ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Liu, H.;  Huazhong University of Science and Technology, PGMF and School of Physics, MOE Key Laboratory of Fundamental Physical Quantities Measurement &
Wang, C.;  University of Leuven, Department of Electrical Engineering-MICAS, Belgium.
Zhao, C.;  Huazhong University of Science and Technology, PGMF and School of Physics, MOE Key Laboratory of Fundamental Physical Quantities Measurement &
Redouté, Jean-Michel  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Stoukatch, Serguei  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Xiao, Q.;  Zhaoqing University, School of Electrical and Electronic Engineering, Zhaoqing, China.
Tu, L.;  Huazhong University of Science and Technology, PGMF and School of Physics, MOE Key Laboratory of Fundamental Physical Quantities Measurement &
Kraft, Michael ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Language :
English
Title :
Towards a Hybrid Mass Sensing System by Combining a QCM Mass Sensor with a 3-DOF Mode Localized Coupled Resonator Stiffness Sensor
Publication date :
2021
Journal title :
IEEE Sensors Journal
ISSN :
1530-437X
eISSN :
1558-1748
Publisher :
Institute of Electrical and Electronics Engineers Inc.
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 02 February 2021

Statistics


Number of views
61 (5 by ULiège)
Number of downloads
2 (2 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenCitations
 
3

Bibliography


Similar publications



Contact ORBi