Bosq D., Nonparametric statistics for stochastic processes. Estimation and prediction. New York: Springer-Verlag; 1998. (Lecture notes in statistics; 110).
Collomb G, Härdle W., Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations. Stochastic Process Appl. 1986;23(1):77–89. doi: 10.1016/0304-4149(86)90017-7
Rosenblatt M., Conditional probability density and regression estimators. Multivariate Analysis, II. Proceeding of International Symposium; Dayton, OH; New York: Academic Press; 1969. p. 25–31.
Stone CJ., Optimal global rates of convergence for nonparametric regression. Ann Statist. 1982;10(4):1040–1053. doi: 10.1214/aos/1176345969
Ramsay JO, Silverman BW., Functional data analysis. New York: Springer Series in Statistics; 2005.
Ferraty F, Vieu P., Nonparametric modelling for functional data, methods, theory, applications and implementations. London: Springer-Verlag; 2006.
Ferraty F, Romain Y., The Oxford handbook of functional data analysis. Oxford: Oxford University Press; 2011.
Hu Y., Nonparametric estimation of variance function for functional data under mixing conditions. Comm. Statistics–Theory and Methods. 2013;42(10):1774–1786. doi: 10.1080/03610926.2011.599007
Ferraty F, Mas A, Vieu P., Nonparametric regression on functional data: inference and practical aspects. Aust N Z J Stat. 2007;49(3):267–286. doi: 10.1111/j.1467-842X.2007.00480.x
Ferraty F, Vieu P., Nonparametric models for functional data, with applications in regression, time series prediction and curve discrimination. J Nonparametr Stat. 2004;16:111–125. The International Conference on Recent Trends and Directions in Nonparametric Statistics. doi: 10.1080/10485250310001622686
Masry E., Nonparametric regression estimation for dependent functional data: asymptotic normality. Stochastic Process Appl. 2005;115:155–177. doi: 10.1016/j.spa.2004.07.006
Rosenblatt M., Uniform ergodicity and strong mixing. Z Wahrs Verw Gebiete. 1972;24:79–84. doi: 10.1007/BF00532465
Gastwirth JL, Rubin H., The asymptotic distribution theory of the empiric cdf for mixing stochastic processes. Ann Statist. 1975;3(4):809–824. doi: 10.1214/aos/1176343184
Chernick MR., A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. Ann Probab. 1981;9:145–149. doi: 10.1214/aop/1176994514
Pham TD, Ran LT., Some mixing properties of time series models. Stochastic Process Appl. 1985;19297–303. doi: 10.1016/0304-4149(85)90031-6
Laïb N, Louani D., Nonparametric kernel regression estimation for functional stationary ergodic data: asymptotic properties. J Multivariate Anal. 2010;101(10):2266–2281. doi: 10.1016/j.jmva.2010.05.010
Laïb N, Louani D., Rates of strong consistencies of the regression function estimator for functional stationary ergodic data. J Statist Plann Inference. 2011;141(1):359–372. doi: 10.1016/j.jspi.2010.06.009
Bouzebda S, Chaouch M, Laïb N., Limiting law results for a class of conditional mode estimates for functional stationary ergodic data. Math Meth Stat. 2016; 25(3):168–195. doi: 10.3103/S1066530716030029
Delecroix M., Sur l'estimation et la prévision nonparamétrique des processes ergodiques. Doctorat d'état, Université des Sciences et Techniques de Lille Flandre-Artois; 1987.
Krengel U., Ergodic theorms. Berlin: Walter de Gruyter & Co; 1985.
Ling N, Liang L, Vieu P, : Nonparametric regression estimation for functional stationary ergodic data with missing at random. J Statist Plann Inference. 2015; 162: 75–87. doi: 10.1016/j.jspi.2015.02.001
Cai TT, Wang L., Adaptive variance function estimation in heteroscedastic nonparametric regression. Ann Statist. 2008;36(5):2025–2054. doi: 10.1214/07-AOS509
Fan JQ, Yao Q., Efficient estimation of conditional variance functions in stochastic regression. Biometrika. 1998;85(3):645–660. doi: 10.1093/biomet/85.3.645
Laïb N., Kernel estimates of the mean and the volatility functions in a nonlinear autoregressive model with ARCH errors. J Statist Plann Inference. 2005;134:116–139. doi: 10.1016/j.jspi.2004.01.019
Hall P, Carroll RJ., Variance function estimation in regression, the effect of estimating the mean. J Roy Statist Soc Ser B-Methodol. 1989;51(1):3–14.
Chaouch M., Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors. J Multivariate Anal. 2019;170:129–148. doi: 10.1016/j.jmva.2018.11.008
Robbins R, Monro SA., A stochastic approximation method. Ann Statist. 1951;22(3):400–407. doi: 10.1214/aoms/1177729586
Révész P., Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I. Studia Sci Math Hungar. 1973;8:391–398.
Amiri A., Recursive regression estimators with application to nonparametric prediction. J Nonparam Stat. 2012;24(1):169–186. doi: 10.1080/10485252.2011.626855
Györfi L, Kholer M, Krzyzak A, Walk H., A distribution-free theory of nonparametric regression. New York: Springer-Verlag; 2002.
Wang L, Liang HY., Strong uniform convergence of the recursive regression estimator under ϕ-mixing conditions. Metrika. 2004;59(3):245–261. doi: 10.1007/s001840300282
Amiri A, Crambes C, Thiam B., Recursive estimation of nonparametric regression with functional covariate. Comp Stat and Data Anal. 2014;69:154–172. doi: 10.1016/j.csda.2013.07.030
Amiri A, Thiam B., Consistency of the recursive nonparametric regression estimation for dependent functional data. J Nonparam Statist. 2014;26(13):471–487. doi: 10.1080/10485252.2014.907406
Rachdi M, Vieu Ph., Nonparametric regression for functional data: automatic smoothing parameter selection. J Statist Plann Inference. 2017;137:2784–2801. doi: 10.1016/j.jspi.2006.10.001
Polyak BT., Introduction to optimization. New York: Optim. Software; 1987.