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ABSTRACT
In this paper, a heteroscedastic functional regression model with
martingale difference errors is considered. We are interested in real-
time estimation of the regression as well as the conditional vari-
ance operators when the response is a real-valued random vari-
able and the covariate belongs to an infinite-dimensional space. A
Robbins–Monro-type estimator of the conditional variance is intro-
duced when a sample is collected from an underlying stationary and
ergodic process. First, a local uniform Lq-consistency (for q ≥ 2) rate
of the recursive estimator of the regression operator is established.
Then, a pointwise mean-square consistency rate of the conditional
variance is given when the regression function is supposed to be
known and when it is estimated recursively. Simulation studies are
conducted to assess the proposed estimator’s performance, in terms
of reducing the computational time without affecting significantly
the accuracy, compared to its natural competitor. An application to
real environmental data is also carried out to illustrate the real-time
on day ahead prediction of the maximum ozone concentration in
Mexico city as well as its volatility.
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1. Introduction

Nonparametric estimation, based on independent and identically distributed (i.i.d.) or
weakly dependent stationary processes, of the regression function has been widely studied
for real or vectorial-valued regressors. See, for example, [1–4] and the references therein.
Recently, an increasing interest is given to the regression function estimation when the
response is scalar and the predictor takes values in some abstract functional space (e.g.
Banach or Hilbert space). The book by Ramsay and Silverman [5] introduced parametric
models for functional data and studied their properties, whereas themonograph by Ferraty
andVieu [6] discussed limit theorems for the nonparametric estimators. Diverse case stud-
ies in several areas including criminology, economics and neurophysiology can be found
in [5,6] and recently [7] for a survey of recent advances on functional data analysis.

In this paper, we consider (X,Y) a pair of random variables defined on the probabil-
ity space (�,A,P), where Y is a real-valued random variable and X a functional random
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2 A. AMIRI ANDM. CHAOUCH

variable that takes values in some abstract functional space E endowed with a semi-metric
d(·, ·). Let (Xi,Yi)i=1,...,n be a stationary and ergodic process distributed as the random
pair (X,Y). We suppose that the data is generated following the nonlinear heteroscedastic
functional regressionmodel defined below:

Yi = r(Xi) + σ(Xi)εi, i = 1, . . . , n, (1)

where r(X) := E(Y|X) and σ 2(X) := Var(Y|X) are, respectively, the regression and the
conditional variance operators ofY givenX. Here, we consider that the sequence of random
variable {εi} form amartingale difference sequence such that

E(εi | Gi−1) = 0 a.s. and Var(εi | Gi−1) = 1 a.s., (2)

where Gi−1 is the σ -field generated by {(X1,Y1), . . . , (Xi−1,Yi−1),Xi}.
A Kernel-type estimators of the regression operator r(x) = E(Y|X = x) and the con-

ditional variance operator σ 2(x) = Var(Y|X = x), for x ∈ E , are defined, respectively, as
follows (see for instance [6,8]):

r̂n(x) =

n∑
i=1

YiK (d(x,Xi)/hn)

n∑
i=1

K (d(x,Xi)/hn)

, (3)

and

σ̂ 2
n (x) =

n∑
i=1

(Yi − r̂n(Xi))
2 K (d(x,Xi)/hn)

n∑
i=1

K (d(x,Xi)/hn)

, (4)

where K(·) is a kernel function, (hn)n a sequence of positive real numbers which decreases
to zero asn tends to infinity. The kernels, bandwidths and the semi-metricsmay be different
between (3) and (4). Many authors investigated several asymptotic aspects of the regres-
sion estimator (3). See for instance the monographs by Ferraty and Vieu [6] and Ferraty
and Romain [7]. Among the asymptotic properties that have been studied, note the mean-
squared convergence, with rates, as well as the asymptotic normality obtained by Ferraty
et al. [9]. While a mixing process is considered, rates of almost sure uniform consistency,
over a compact set, of (3) were established in [10]. Masry [11] obtained the mean-squared
convergence and the asymptotic normality under the same framework.

All the asymptotic results mentioned above concerning the regression were established
under mixing assumptions. However, it is well known that the mixing conditions may be
viewed as an asymptotic independence (see [12]), and they are very restrictive assumptions
since some linear processes (such as autoregressive processes) do not even satisfy them
(see [13–16] for more details and examples). Consequently, it is relevant to find similar
asymptotic results concerning the nonparametric regression estimator under a more gen-
eral and less restrictive dependence assumptions. Recently, Laïb andLouani [17,18] studied
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the conditional bias of the regression estimator (3) and established the almost sure uniform
consistency rate as well as the asymptotic normality for stationary and ergodic processes.
For further theoretical and practicalmotivations to consider ergodic data, reader is advised
to see [12,17,19–22], among others.

Unlike the regression function, less attention was given to the nonparametric condi-
tional variance estimator, given by (4), when the regressor is functional. Estimation of the
conditional variance is an important statistical task since it measures the risk associated to
the regression estimation. The conditional variance also appears in the form of the regres-
sion confidence interval and therefore its estimation as well as the study of its asymptotic
properties is clearly relevant. In finite-dimensional case (X ∈ Rd, d ≥ 1) several authors
were interested to the question (see for instance [23–26]). As far as we know, in the infinite-
dimensional case (X is functional), Hu [8] studied the convergence in probability (without
rate) under a strongmixing assumption.More recently, Chaouch [27] investigated the uni-
form consistency rate as well as the asymptotic normality of the conditional variance when
data are generated from an heteroscedastic functional regression model with martingale
difference errors.

Motivated by Chaouch [27] and Stadtmüller and Tsybakov [28], our purpose in this
paper is to introduce a recursive estimator of the regression and the variance operators
based on stochastic approximation algorithm. Nowadays, with the progress of measure-
ment apparatus and the development of automatic sensors, we can get access to large
samples of observations taking values in high dimensional spaces. Therefore, within
this new framework of ‘massive data’ classical estimation approaches, such as maximum
likelihood or least squares, are time consuming. To deal with this constraint, recursive
techniques allow to perform the conditional variance estimation without any full data stor-
age requirement. When the data arrive sequently the value of each successive estimator is
obtained from its value at the previous step by a simple adjustment that takes into account
only the recently received data.

The use of stochastic algorithms has been introduced by Robbins and Monro [29]
and adopted by Révész [30] for the nonparametric regression estimation. Several authors,
such as [31–33] studied the asymptotic properties of the recursive regression estimator
in the finite-dimensional framework. Recently, Amiri et al. [34] and Amiri and Thiam
[35] defined this estimator (for a particular choice of the step size) when the regressor
takes values in an infinite-dimensional space with i.i.d and α-mixing data respectively.
In this paper, we generalize the [35] estimator to a wider class of dependent processes
(satisfying an ergodic assumption) and for any step size. In contrast to the regression oper-
ator, and to the best of our knowledge, a recursive estimator of the conditional variance
has not been introduced in the statistical literature when the covariate is infinite dimen-
sional. In the finite-dimensional case (X ∈ Rd) and when the data is i.i.d., [28] studied
the Robins–Monro-type estimator of the regression function as well as the conditional
variance. Our results may be seen as a generalization of the results obtained in the last
reference.

This paper is organized as follows. In Section 2, Robbins–Monro-type estimators of the
regression and the conditional variance are introduced. Section 3, contains themain results
which are the uniform, in a neighbourhood of x ∈ E , Lq-convergence (q ≥ 2) with rate of
the nonparametric regression estimator and the pointwise mean-squared convergence rate
of the conditional variance estimator. Section 4, is devoted to a simulation study which
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show that the recursive nonparametric estimator of the conditional variance remains as
accurate as the nonrecursive one while its computation is less time consuming when data
is received online. Finally, the proofs of the theoretical results are stated in Section 6.

2. Real-time estimation of the conditional variance

In order to argue the definitions given in (5)–(6), we recall the stochastic approximation
algorithm proposed by Robbins and Monro [29]. Let M(·) be a given function such that
the equationM(z) = 0 has a unique zero, say z = ϑ . The purpose is to estimateϑ . Robbins
and Monro [29] achieved this by maintaining a running estimate ϑ̂n at step ‘n+ 1’ given
by ϑ̂n+1 = ϑ̂n − anηn, where an is a step-size tending to zero and ηn is an appropriate esti-
mator of the functional M(·), which depends on ϑ̂n and the information received at ‘step
n+ 1’. Keeping the above definition inmind, we are interested in the asymptotic properties
of the regression and conditional variance estimators defined as follows. For x ∈ E , an esti-
mator of the regression operator r(x), using the sample (X1,Y1), . . . , (Xn,Yn), is defined
as follows:

rn(x) = rn−1(x) + θn [Yn − rn−1(x)] (5)

where (θn)n is a sequence of positive numbers tending to zero as n goes to infinity. Given
(5), a sequential estimator of σ 2(x), can be defined through a stochastic approximation
algorithm as follows:

σ 2
n (x) = σ 2

n−1(x) + τn
{
[Yn − rn−1(Xn)]2 − σ 2

n−1(x)
}

(6)

where (τn)n is a sequence of positive numbers tending to zero as n goes to infinity, for any
x ∈ E . In the representations of the estimators in (5) and (6), Yn and (Yn − rn−1(Xn))

2

can be seen as the estimators of r(x) and σ 2(x) based on the only data recorded at ‘step
n ’. Therefore, our estimators follow from the stochastic approximation algorithms, by
choosing M(z) = z − r(x) for the regression and M(z) = z − σ 2(x) for the conditional
variance, with respective step sizes θn and τn. In practice, the initial values r0(x) and σ 2

0 (x)
may be chosen arbitrarily or at random. In the statistical literature, several choices of θn
and τn are possible. A popular choice of θn and τn is θn = θ0n−1
nF−1

x (hn) and τn =
τ0n−1
nF−1

x (hn), where


n := 
n(x) := K [d(x,Xn)/hn] and Fx(h) := P [d(x,X) ≤ h] , (7)

θ0 and τ0 are positive constants. In this case, the algorithms in (5) and (6) are very similar
to the valuable stochastic approximation approach introduced in [30]. However, it is easy
to see that the recursive form of the regression and the conditional variance estimators
in Equations (5) and (6) are not fully computable with the choices above because of the
presence of Fx(hn) which is unknown. As discussed in simulations below, this issue can be
solved by making a suitable choice of the θn and τn (as functions of Fx(hn)) or replacing
Fx(·) with its empirical counterpart. As another example, if

θn = τn = 
n(x)Fx(hn)−�∑n
i=1 
i(x)Fx(hi)−�

, � ∈ [0, 1], (8)
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then from (5), one gets

rn(x) :=
ϕ
[�]
n,1(x)

ϕ
[�]
n,0(x)

, where ϕ[�]
n,s (x) =

n∑
i=1

Ys
i
i(x)
Fx(hi)�

, s ∈ {0, 1}. (9)

The estimators (9) was proposed by Amiri et al. [34] as a recursive counterpart of the func-
tional regression estimate (3). The asymptotic properties, such as the mean square error
and the almost sure convergence, of rn(x) was derived by Amiri et al. [34]. Moreover, the
same choice of θn and τn given in (8), and an easy computation allow to represent the
estimator (6) as follows:

σ 2
n (x) =

n∑
i=1

(
Yi − r[�]i−1(Xi)

)2
Fx(hi)−�K (d(x,Xi)/hi)

n∑
i=1

Fx(hi)−�K (d(x,Xi)/hi)

. (10)

Thus, in case � = 0, (10) is a sequential version of (4) which is obtained by considering
sequences of bandwidth parameters (hi)i and regression estimators (ri−1(·))i rather than a
single bandwidth and single regression estimator value.

3. Assumptions and asymptotic results

In order to state our results, let us introduce some additional notations. Let Fn−1 be the
σ -field generated by {(X1,Y1), . . . , (Xn−1,Yn−1)}. In what follows, we consider a fixed
curve x ∈ E . We denote by B(x, h) a ball centred at x ∈ E with radius h. Working on the
probability space (�,A,P), let FFi−1

x (h) = P(Xi ∈ B(x, h) | Fi−1) the conditional distri-
bution function, given the σ -field Fi−1, of the real random variable d(x,Xi). Denote by
oa.s.(h) (resp.Oa.s.(h)) a real random functionω such thatω(h)/h converges to zero almost
surely as h → 0 (resp. ω(h)/h is almost surely bounded).

In the sequel, we consider q ≥ 2 satisfying the assumptions (H0) and (H3). Our first
result consists in establishing the uniform, in a neighbourhood of x, Lq-consistency rate
of the recursive estimator of the regression operator. Then, a pointwise mean square
consistency with rate of the conditional variance operator is given.

(H0) E(|εn|t|Gn−1) = E(|εn|t|Xn) ≤ μt < ∞, for any 2 ≤ t ≤ q.
(H1) K is nonnegative bounded kernel of class C1 over its support [0, 1] and satisfied the

condition K ′(t) < 0, ∀t ∈ [0, 1] and | ∫ 1
0 (Kj)′(u)du| < ∞ for j ≥ 1.

(H2) There exists a sequence of nonnegative random functionals (fi,1(·))i≥1 almost surely
bounded by a sequence of deterministic quantities (bi(·))i, such that supi,x bi(x) <

∞. Let (gi,x(·))i≥1 be a sequence of random functions, f1(·) a deterministic positive
functional and a nonnegative real function φ(·) tending to zero, as its argument
tends to 0, such that:
(i) Fx(h) = φ(h)f1(x) + o(φ(h)) as h → 0, where o(φ(h)) is uniform in x.
(ii) For any i ∈ N, FFi−1

x (h) = φ(h)fi,1(x) + gi,x(h), with gi,x(h) = oa.s.(φ(h))ash →
0, and gi,x(h)/φ(h) is almost surely bounded uniformly in x and oa.s.(φ(h)) is
uniform in x.
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(iii) There exists a nondecreasing bounded function τ0 such that, uniformly in s ∈
[0, 1],φ(hs)/φ(h) = τ0(s) + o(1), ash ↓ 0 and, for j ≥ 1,

∫ 1
0 (Kj(t))′τ0(t)dt < ∞.

(H3) (i) There exist α > 0 and c1 > 0 such that supz∈B(x,hn) |r(z) − r(x)| ≤ c1dα(z, x).
(ii) There exist β > 0 and c2 > 0 such that supz∈B(x,hn) |σ t(z) − σ t(x)| ≤

c2dβ(z, x), for any 0 < t ≤ q.
(iii) The operator f1(·) is uniformly bounded on B(x, hn) and 0 < C0 ≤ infn≥1

infz∈B(x,hn) f1(z).
Let

C� := M1
supn≥1 supz∈B(x,hn) bn(z)
infn≥1 infz∈B(x,hn) f1(z)

, (11)

where, as in [9], we define:Mj = Kj(1) − ∫ 1
0 (sKj(s))′τ0(s)ds, for j = 1, 2.

Comments on assumptions: Condition (H0) is of Markov-type condition, whereas
(H1) is classical in nonparametric estimation. Assumptions (H3)(i)–(iii) are smoothness
conditions of the regression and the variance functions, respectively. Similar conditions
have been assumed by Laïb and Louani [18] and by Stadtmüller and Tsybakov [28].
Hypotheses (H2) involve the ergodic nature of the data and the small ball techniques used
in this paper. Laïb and Louani [18] discussed several examples of processes satisfying the
condition (H2)(ii) and they gave an explicit form of their conditional, with respect to the
σ -field Fi−1, small ball probability.

Theorem 3.1: Let rn(x) be the estimator defined in (5)with θn = ρn
nF−1
x (hn),
n and Fx

defined in (7). Suppose the following conditions are satisfied:

(i) hn ↓ 0, ρn → 0, (ii) ρnφ
−1(hn) → 0 as n → ∞ and (iii)

∞∑
n=1

ρn = ∞. (12)

Then, for any q ≥ 2 such that the assumptions (H0)–(H3) hold true, we have

sup
z∈B(x,hn)

E |rn(z) − r(z)|q → 0, as n → ∞. (13)

Moreover, let

φ(h) = φ0hν , and ρn = ρ0n−1, with ρ0 >
α

C� (2α + ν)
, (14)

φ0 and ν are positive constants. If hn = h0n−(1/2α+ν), h0 > 0, then we have

sup
z∈B(x,hn)

E |rn(z) − r(z)|q = O
(
n−(qα/(2α+ν))

)
, as n → ∞. (15)

Remark 1: The L2-convergence of rn(x) was derived by Amiri et al. [34]. In Theorem 3.1,
we generalized their results and established the uniform, with respect to z ∈ B(x, hn),
Lq-convergence (q ≥ 2) of rn(z) under an ergodic assumption. Notice that, since we are
considering a general dependence framework, proofs of our results are based onmartingale
difference techniques which allow to provide a unified nonparametric time series analysis
setting.
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In the next theorem, we state the L2-convergence of the conditional variance estimator.

Theorem3.2: Given a fixed x ∈ E , let rn(x) and σ 2
n (x) stand for the estimators defined in (5)

and (6) with the choices: θn = ρn
nF−1
x (hn) and τn = γn
nF−1

x (hn), 
n and Fx defined
in (7). Under assumptions (H0)–(H3) and if the following conditions:

(i) γn → 0, γnφ
−1(hn) → 0 (ii) γnφ

−2(hn) → 0 as n → ∞ and (iii)
∞∑
n=1

γn = ∞,

(16)
and those given in (12) are also satisfied, then, one gets

E
[
σ 2
n (x) − σ 2(x)

]2 → 0, as n → ∞.

Furthermore, by considering choices in (14) and

γn = γ0n−1, with γ0 >
min

{ 8α−3ν
2 , 2α

}
2C� (2β + ν)

and ν ≤ 8α
3
, (17)

if hn = h0n−(1/(2β+ν)), h0 > 0, we obtain

E
[
σ 2
n (x) − σ 2(x)

]2 = O
(
n−((min{(8α−3ν)/2, 2β})/(2β+ν))

)
, as n → ∞. (18)

Corollary 3.2.1: In the case the regression operator r(·) is known,we get, under assumptions
and conditions of Theorem 3.1,

E
[
σ 2
n (x) − σ 2(x)

]2 = O
(
n−(2β/(2β+ν))

)
, as n → ∞. (19)

Discussion of the results: Observe that our results given in the above theorems are
established under conditions (12)–(17) which are classical in recursive estimation based
on stochastic algorithms. Similar conditions are used by Stadtmüller and Tsybakov [28] in
the finite-dimensional context and for independent data. Moreover, the choice made for
the small ball probability in (14) is satisfied for some functional random variables such as
the case when X is a fractal process with respect to d(·) (see for instance [9]) or when X is
generated by a functional Autoregressive model (see [18] for more details).

Now, we are interested in comparing our result about the variance with the one given in
[8] in the i.i.d. case and using the same choice of hn = h0n−1/2β+ν , h0 > 0, and φ(hn)
given in (14). An easy calculation shows that, when α > 3ν/4, the rate of convergence for
the recursive estimator of the variance given in (18) is better than the Hu’s nonrecursive
one, even if Hu’s convergence results are in probability. Observe that the convergence rate
obtained in Corollary 3.2.1 can be reached also when the regression function is unknown
whenever α > (3ν + 4β)/8.

4. Simulation studies

In this simulation study, we are interested in the evaluation of the accuracy of the recursive
conditional variance estimator. A sample (Xi,Yi)i=1,...,500 is simulatedwhere the functional
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covariates are generated as:

X(t) = A(2 − cos(π tω)) + (1 − A) cos(π tω), t ∈ [0, 1],

where ω� N (0, 1) and A is a Bernoulli random variable with parameter equal to 1/2. In
practice we do not observe the curves continuously over the interval [0, 1]. A discretized
version of them is rather observed. Therefore, all curves are sampled at the same grid of
100 equidistant points on [0, 1].

The response variable Yi is simulated according to the heteroscedastic regressionmodel
below:

Yi =
∫ 1

−1
tXi(t)dt +

(∫ 1

−1
|t|X2

i (t)dt
)

εi, i = 1, . . . , n,

where the residuals εi are generated according to the following models:

model_1 : εi = 1/
√
2(εi−1 + ηi), where ηi iid centred Gaussian random variables with

mean equal zero and variance equal to 5.
model_2 : εi are independent Bernoulli random variables with mean equal to 1/2.

We split this sample into two parts: a learning subsample {(Xi,Yi); i = 1, . . . , 450} which
is used to find the ‘optimal’ smoothing parameters as well as the ‘optimal’ step sizes
to calculate the real-time and the static estimators. The testing subsample {(Xj,Yj);
j = 451, . . . , 500} is rather used to evaluate the performance of the predictor.

Observe that the estimator of the variance function can be seen as a regression function
where the response variables are the square of the observed residuals. Therefore, and by
analogy as for the conditional mean, the conditional variance is seen as the predictor of
the true errors [Yi − r(Xi)]2 in the testing subsample. Since we investigate the case of real-
time estimation, our purpose is to initiate the estimation of the conditional variance based
on n0 = 30 observations. Such initial value is obtained via Hu’s nonrecursive estimator
in (4) and performed with the Ferraty and Vieu’s R-routine called funopare.knn.lcv.1

The next step consists in updating the initial value of the estimator until the final sam-
ple size 30 < N ≤ 500 is reached. The updated values are obtained by using the recursive
estimator given in (6) and compared, in terms of accuracy and computation time, to the
nonrecursive estimator as defined in (4). Under the functional data framework, consid-
ered here, the computation of 
n depends on some tuning parameters. To this end, the
semi-metric d(·, ·) is based on the L2 distance of the second derivatives of the curves. More
precisely

d (Xi, x) =
√

1√
2

〈
X(2)
i − x(2),X(2)

i − x(2)
〉
, i = 1, . . . ,N,

where X(2)
i and x(2) are, respectively, the second derivative of the curves Xi and x and 〈·, ·〉

is the L2 inner product.
As discussed in [6], this choice is argued by the fact that the curves are smooth enough.

The choice of K(·) is not crucial in nonparametric estimation, thus we use the quadratic
kernel defined by K(u) = 3

2 (1 − u2)1[0,1)(u), u ∈ R, which behaves correctly in practice
and is easy to implement.
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4.1. Accuracy with respect to θn and τn choices

To perform the estimators (5) and (6), we consider the following cases θn, τn ∈
{
n/

∑n
i=1 
i, 
nFn(hn)/

∑n
i=1 
iFi(hi), 
n/nFn(hn), 1/n}, where Fn is the empirical

version of Fx and (hi)i=1,...,n a sequence of bandwidth selected such that

hn = C max
1≤i≤n

d (Xi, x) n−ν , n = n0 + 1, . . . ,N. (20)

The constants C and ν are such that 0 < C < 10, 0 < ν < 1 and they minimize the
following cross-variation criterion:

CV(C, ν) := 1
n

n∑
j=1

[
Yj − r̂n,[−j]

(
Xj
)]2 , (21)

where r̂n,[−j] indicates the regression estimator based on the sample (X1,Y1) . . . (Xn,Yn)

leaving out the pair (Xj,Yj) from the sample. Then, we apply the same method at a second
stage to select the ‘optimal’ bandwidth associated to the conditional variance estimator
given in (6).

Observe that the estimator of the conditional variance can be seen as a regression func-
tion where the response variables are the square of the observed residuals. Therefore, and
by analogy as for the conditional mean, the conditional variance is seen as the predictor
of the true errors [Yi − r(Xi)]2 in the testing subsample. In this subsection, we consider
N = 100 and the simulations are repeated over 100 replications.

Let us denote by σ 2
n,k(x) the value of the conditional variance estimator computed from

the kth replication of the Monte–Carlo procedure and evaluated at a fixed curve x. The
prediction accuracy (at step k) of the estimators is measured by the average mean square
error (AMSEk)k=1,...,100 such that

AMSEk = 1
50(N − n0)

N∑
n=n0+1

500∑
j=451

{[
Yj − r(Xj)

]2 − σ 2
n,k(Xj)

}2
, k = 1, . . . , 100. (22)

The prediction errors (the box-plots of the sequence (AMSEk)k=1,...,100) are displayed in
Figure 1. It can be observed that, for the considered choice of bandwidth hn, the prediction
errors are comparable for the different values of step-size parameters θn and τn considered
in this simulation study. Thus, for a specific choice of bandwidth, the step-size parameters
do not have a major influence on the quality of the prediction even though the smallest
AMSEs were recorded for (θn, τn) = (
n/

∑n
i=1 
i, 1/n).

4.2. Comparison of recursive and nonrecursive estimators

In this subsection, the step-seizes are selected, as per the previous study, such that
θn = 
n/

∑n
i=1 
i and τn = 1/n. The purpose of this simulation study is to assess the

accuracy of the recursive conditional variance estimator and compare it to its natural
competitor introduced by Hu [8].

Following the study of Rachdi and Vieu [36], an automatic selection of the bandwidth
with cross-validation procedure is considered to compute the nonrecursive estimators of



10 A. AMIRI ANDM. CHAOUCH

Figure 1. Boxplots of the average (over the N − n0 estimation steps and the test sample) mean square
errors (computed at the various iteration k = 1, . . . , 100 of the Monte–Carlo procedure) of the condi-
tional variance estimator defined in (6), using different values of θn and τn, n = 31, . . . , 100 inmodels_1
and models_2.

the regression and the conditional variance defined, respectively, in (3) and (4). For the
recursive estimators of the regression and the conditional variance, the bandwidths are
selected using the criteria described in (20).

In this comparison, we consider model_1 and model_2 described above and the final
sample sizes are 50, 100 and 200. We consider 100 replications of the Monte–Carlo proce-
dure and compute the average mean square error defined in (22). The results are displayed
in Figure 2. For a fixed sample size N, a comparison of the AMSEs shows that the nonre-
cursive estimator is slightly better than the recursive one. Moreover, it can be noticed that
prediction errors decrease when the sample size N increases. As it can be observed later,
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Figure 2. Boxplots of the average (over the N − n0 estimation steps and the test sample) mean square
errors (computed over 100 iterations of a Monte–Carlo simulation) of the conditional variance estimator
defined in (6), using θn = 
n/

∑n
i=1 
i and τn = 1/n, n = 31, . . . ,N in models_1 and models_2.

the main advantage of the recursive estimator is its significantly reduced computational
time.

5. Application tomassive ozone concentration data

This section aims to illustrate the developed methodology using the air quality data in
Mexico City metro area. The R package aire.zmv2 is an open source tool which provides
a real-time, daily maximum, minimum, or hourly average data for each pollution measur-
ing station or geographical zones in the Zona Metropolitana del Valle de Mexico (greater
Mexico City).

In this application, we are interested in real-time (online) one day-ahead forecasting
the average (over stations located in Mexico city) daily maximum ozone concentration.
The raw data comes in the form of a time series observed at each hour from 1986 to 2019.
Since our purpose is to provide an illustration of the developed methodology, we consider
only the data from 01 January 2005 to 15 July 2019. There are somemissing measurements
due to sensors failure at some hours, such a data are removed from the study for simplicity.

The first step in this analysis consists in transforming themain discrete time series into a
functional time series where curves displayed in Figure 3 are realizations of the functional
random variable X. In total, there are n = 4988 daily curves, say X1, . . . ,Xn, discretized
at p = 24 points (corresponding the hours of the day). The response variable of interest
Y in this study is the average daily maximum ozone concentration and the covariate X
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Figure 3. A sample of intraday average maximum ozone concentration curves in Mexico city.

used to predict Y is the previous day average maximum ozone concentration curve. Here,
it is assumed that the current average maximum ozone concentration curve gives enough
information to predict the next day average peak ozone concentration. Such assumption is
known as Markov property which is well considered in short-term time series forecasting.

More formally, for a specific day d, Yd is such that Yd = max1≤j≤24 Xd(j) where Xd(j)
is the average maximum ozone concentration of the day d at the hour j. Therefore, the
available sample is (X1,Y2), (X2,Y3), . . . , (Xn−1,Yn).

Our purpose in this application is to use the regression function as a day-ahead pre-
dictor of the unknown average daily ozone concentration peak given the last observed
intraday ozone concentration curve. In other words, the prediction of the average peak
ozone concentration in Mexico city at the day n+ 1 will be denoted by Ŷnr

n which is
calculated by using the whole available sample till the day n and by considering the non-
recursive regression estimator defined in (3) as a predictor. Moreover, the risk associated
with such prediction is assessed by the conditional variance denoted R̂nrn which is calculated
nonrecursively using (4). On the other hand, the average daily peak ozone concentra-
tion as well as its volatility are computed recursively (denoted respectively Ŷr

n := rn−1(Xn)

and R̂rn := σn−1(Xn)) using the recursive regression and conditional variance estimators
defined, respectively, in (5) and (6).

Days from 11 April 2005 to 14 July 2019 are used as a testing subsample allowing to
assess the forecasts, whereas the rest of the data are considered as a training subsample used
to select the ‘optimal’ smoothing parameters. Notice that, under this online forecasting
framework, the training subsample is sequentially updated (each day) by one additional
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Algorithm 1 Online one day-ahead volatility forecasting (recursive)
1: procedure Online one day-ahead forecasting of peak ozone concentration

and its volatility
2: Initialization consider the first n0 = 100 pairs {(X1,Y2), . . . , (Xn0−1,Yn0),Xn0} and

use the Ferraty and Vieu’s R-routine to
(i) forecastYn0+1 using the regression estimator defined in (3). Such predicted value

is denoted Ŷinit
n0 := rn0−1(Xn0). Let hYn0−1 be the bandwidth used to make such

prediction;
(ii) calculate the risk associated with Ŷinit

n0 by using the offline conditional variance
estimator given by (4) and let us denoted by R̂initn0 := σ 2

n0−1(Xn0). Let h
R
n0−1 be its

associated bandwidth parameter.
(iii) Then calculate the small ball probabilities and the step-sizes (with hn0−1 ∈

{hYn0−1, h
R
n0−1}) as:

F̂n0−1 = 1
n0 − 1

n0−1∑
j=1

1{d(Xj,Xn0 )≤hn0−1},

θn0−1 = τn0−1 = 1
(n0 − 1)̂Fn0−1

K
(
d(Xn0−1,Xn0)/hn0−1

)
.

3: for each j in (n0 + 1) to n = 4988 do
4: select the parameters (CY , νY) and (CR, νR) using the cross-

validation procedure (21) on the grid of candidates {0.5, 1, 2, 10, 50} ×
{1/300, 1/200, 1/100, 1/50, 1/10, 1/2}. Then calculate the new bandwidth parameters
hj−1 = Cmax1≤i≤j−1 d

(
Xi,Xj

)
(j − 1)−ν , (C, ν) ∈ {CY ,CR} × {νY , νR}.

5: update the small ball probabilities, the step-sizes and the last forecasts Ŷr
j−1 and

R̂rj−1 by considering only the last received pair (Xj−1,Yj) using the following formulas:

F̂j−1 = F̂j−2 + 1
j − 1

[
1{d(Xj−1,Xj)≤hj−1} − F̂j−2

]
, (23)

θj−1 = τj−1 = 1
(j − 1)̂Fj−1

K
(
d(Xj−1,Xj)/hj−1

)
,

Ŷr
j = Ŷr

j−1 + θj−1

(
Yj − Ŷr

j−1

)
, (24)

R̂rj = R̂rj−1 + τj−1

[(
Yj − Ŷr

j−1

)2 − R̂rj−1

]
. (25)

6: end for
7: end procedure

observation which is removed from the testing subsample. Moreover, as in the simula-
tion study, the quadratic kernel is considered in this application and given the degree of
smoothness of the curves (see Figure 3) the L2 distance between the second derivatives
of the curves is considered as a semi-metric for both regression and conditional variance
estimators. The ‘optimal’ bandwidths, for the recursive and the nonrecursive regression
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and conditional variance estimators, are obtained by using the same procedures detailed
in subsection 4.1.

Algorithms 1 and 2 describe the procedures used to obtain the online (recursive) as
well as the offline (nonrecursive) day-ahead forecasts of the daily average peak ozone
concentration and its volatility.

Algorithm 2 Offline one day-ahead volatility forecasting (nonrecursive)
1: procedureOffline one day-ahead forecasting of peak ozone concentration

and its volatility
2: Initialization consider the first n0 = 100 pairs {(X1,Y2), . . . , (Xn0−1,Yn0),Xn0} and

use the Ferraty and Vieu’s R-routine to
(i) forecast Yn0+1 using the regression estimator defined in (3). Such predicted value

is denoted Ŷinit
n0 := rn0−1(Xn0). Let hYn0−1 be the bandwidth used to make such

prediction;
(ii) calculate the risk associated to Ŷinit

n0 by using the offline conditional variance estima-
tor given by (4) and let us denoted by R̂initn0 := σ 2

n0−1(Xn0). Let h
R
n0−1 be its associated

bandwidth parameter.
3: for each j in (n0 + 1) to n = 4988 do
4: select the bandwidth hj−1 by a cross-validation procedure over a sequence of

20 candidates of bandwidths, based on the full sample {(X1,Y2), . . . , (Xj−1,Yj),Xj}.
This procedure is performed using the R routines funopare.kernel.cv (a global band-
width is automatically selected with a cross-validation procedure) or funopare.knn.lcv
(a local bandwidth (i.e. local number of neighbours) is selected by a cross-validation
procedure).

5: again use the full sample {(X1,Y2), . . . , (Xj−1,Yj),Xj} and the selected band-
width to calculate Ŷnr

j and R̂nrj the nonrecursive (static) forecasts of the average peak
load and its volatility using, respectively, nonrecursive estimators of the regression and
the variance operators defined in (3) and (4). This is donewith the help of theR routine
funopare.kernel.

6: end for
7: end procedure

Remark 2: Observe that if we replace, in Equations (24) and (25), Ŷr
j and R̂

r
j by their values,

one gets, for j = n0 + 1, . . . , n:

rj−1(Xj) = rj−2(Xj−1) + θj−1
[
Yj − rj−2(Xj−1)

]
(26)

and
σ 2
j−1(Xj) = σ 2

j−2(Xj−1) + τj−1

{[
Yj − rj−2(Xj−1)

]2 − σ 2
j−2(Xj−1)

}
. (27)

Therefore, a comparison, to the recursive estimators defined in Equations (5) and (6),
shows that the argument where the regression and the conditional variance operators are
applied is not fixed under the forecasting context. Indeed, in (5) and (6) the regression
and the conditional variance are evaluated at a fixed curve x whereas in (26) and (27)
the estimators are evaluated at different curves. This effect is due to the online forecasting
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framework considered in this study. As a consequence, the predictors used in this applica-
tion to obtain the one day-ahead forecasts do not exactly fit to the theoretical framework
developed in Section 3.Nevertheless, the actual application aims to illustrate how the recur-
sive estimators defined in (5) and (6) might be useful to provide real-time forecasts even
though the proxies of the above estimators are used.

The theoretical study of the predictors defined in (26) and (27), where the argument of
the regression and the variance operators moves over time, will be the purpose of future
studies. Notice that, the same problem also occurs to update, recursively, the small ball
probability estimator given in Equation (23). Indeed, one can observe that the argument,
which is the bandwidth, in the empirical distribution function changes from an iteration to
another. A nonrecursive representation of the empirical distribution function can be used
but a supplementary computational complexity will be added to the approach.

5.1. On the assessment of the accuracy of online and offline one day-ahead
forecasts

To assess the performance, in terms of forecast accuracy, of online and offline forecasts, the
relative absolute prediction error is considered. Thus, for each step j ∈ {101, . . . , 4988}

RAErj =
|Yj − Ŷr

j−1|
Yj

and RAEnrj =
|Yj − Ŷnr

j−1|
Yj

.

Observe that, in contrast to the simulation study where the form of the conditional vari-
ance is known, in practice we cannot assess the prediction performance of the volatility.
Figure 4 displays the relative absolute prediction errors of the average ozone concentra-
tion peak as well as the associated predicted volatilities. The results are clustered by type of
the day in the week. Overall, the nonrecursive method provides more accurate predictions
than the recursive one. Moreover, one can observe smaller predicted volatilities with the
nonrecursive method compared to the recursive one.

In the following subsections 5.2–5.4, we are interested in answering the following
questions:

(1) Does considering recursive small ball probability estimator reduce the computation
time of the online forecasts?

(2) After separating the time needed to select the bandwidths, how fast are the online
forecasts compared to the offline ones?

(3) Which bandwidth criterion selection reduces more the computation time of online
forecasts?

5.2. The effect of considering a recursive small ball probability in reducing the
online forecasts’ computation time

In this subsection, we are interested in answering the question (1) above, which consists in
assessing the computation time reduction of the online forecasts when the small ball prob-
ability is also estimated recursively as per Equation (23). Figure 5 displays the sequence
of time (daily updating time and cumulated time) needed to calculate the one-day ahead
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Figure 4. Relative absolute prediction errors, clustered by day type, of average peak ozone concentra-
tion in Mexico city obtained with recursive and nonrecursive approaches (left panels). The predicted
volatility, clustered by type of day, using recursive and nonrecursive approaches (right panels).

forecasts of the peak ozone concentration as well as its volatility using the recursive esti-
mators whenever the small ball probability is estimated recursively or not. It is worth
noting, here, that the time needed to select the bandwidth is excluded from the comparison.
In Figure 5 recursive estimators of the regression and the conditional variance involving
recursive estimation of the small ball probability are called totally recursive. Whereas, those
using a nonrecursive estimator of the small ball probability are called partially recursive.

5.3. Time efficiency comparison between online and offline predictors when small
ball probability is estimated recursively

The purpose of this subsection is to compare the time efficiency of the total recursive esti-
mators to the nonrecursive ones after excluding the time elapsed to select the smoothing
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Figure 5. Daily computational times in seconds (as a function of the number of observations in the
testing sample) needed to obtain one-day ahead forecasts (top two panels) and the cumulated com-
putational time needed to obtain all the predictions until the actual testing sample size (bottom two
panels). Left panels: recursive predictor with a recursive small ball probability and right panels: recursive
predictor with a nonrecursive small ball probability.

parameters. More precisely, we first select the smoothing parameters of the totally recursive
and the nonrecursive estimators according to steps 4 detailed in Algorithms 1 and 2. Then,
we start assessing the computation time efficiency of the totally recursive predictions and
the nonrecursive ones. In other words, we compare the time elapsed to execute the steps 5
for the online forecasts (Algorithm 1) and for offline forecasts (Algorithm 2).3

Figure 6 displays the computation time elapsed to obtain the one-day ahead forecasts,
as well as the cumulative time needed to cover all testing sample, using the totally recursive
and the nonrecursive estimators. We recall that the time needed to select the smoothing
parameter is excluded from computation time assessment. One can notice that predictions
with totally recursive approach are much faster than the nonrecursive one. The gain in
speed of the recursive predictor is substantial when the step size in step 5 of Algorithm 1
is provided using a recursive proxy of the small ball probability.
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Figure 6. Daily computational times in seconds (as a function of the number of observations in the
testing sample) needed to obtain one-day ahead forecasts (top two panels) and the cumulated com-
putational time needed to obtain all the predictions until the actual testing sample size (bottom two
panels). Left two panels: totally recursive predictor and right two panels: nonrecursive predictor.

5.4. Discussion on the smoothing parameter selection criterion

In this subsection, we are interested in comparing the smoothing parameter selection cri-
terion detailed in steps 4 of Algorithms 1 and 2. We are trying to answer the question (3)
above and assessing the two bandwidth selection criterion in reducing the computation
time of the totally recursive estimator. In order to conduct a fair comparison, a grid of 20
possible bandwidths is considered in performing steps 4 in the two algorithms.

Figure 7 displays the time elapsed, for each daily bandwidth selection using the cross-
validation procedures described in steps 4 of Algorithms 1 and 2. One can observe that the
bandwidth criterion given in Algorithm 1 is more efficient, in reducing the computation
time of the totally recursive estimators, compared to the one used in Algorithm 2.
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Figure 7. Daily computational time in seconds (as a function of the number of observations in the test-
ing sample) needed to select the bandwidth using the cross-validation procedures described in steps 4
of Algorithm 1 (left panel) and Algorithm 2 (right panel).

6. Proof of main results

Here and later, C will denote a positive constant whose value is not important and may
vary from line to line.

Proof of Theorem 3.1: For any q ≥ 2 and z ∈ B(x, hn), let us denote by

Vn(z) := |rn(z) − r(z)|q and δn := δn(z) = θn [Yn − rn−1(z)]

with θn := θn(z) defined in Theorem 3.1.
Using the recursive form of the regression operator given by Equation (5) and a Taylor

expansion of the function u �→ |u|q over the points u0 = rn−1(z) − r(z) and u0 + δn one
gets:

Vn(z) = Vn−1(z) + qδnV
(q−2)/q
n−1 (z) [rn−1(z) − r(z)]

+ 1
2
q(q − 1)δ2n

[
V1/q
n−1(z) + |δn|υ

]q−2
, (28)

with 0 < υ < 1.
First, by applying the cr-inequality, we obtain:

E

{
δ2n

[
V1/q
n−1(z) + |δn|υ

]q−2 |Fn−1

}
≤ cq−1E

{
δ2n

[
V(q−2)/q
n−1 (z) + |δn|q−2

]
|Fn−1

}
.

(29)
Next, observe that

E (δn|Fn−1) = E {[r(Xn) + σ(Xn)εn − rn−1(z)] θn|Fn−1}

= ρn

F(hn)

(
E {[r(Xn) − r(z) + r(z) − rn−1(z)]
n(z)|Fn−1}

+E {σ(Xn)εn
n(z)|Fn−1}
)

=:
ρn

F(hn)
(I1 + I2) .
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Using condition (2) and by a double conditioning with respect to the σ -field Gn−1, one can
write

I2 = E {E [σ(Xn)εn
n(z)|Gn−1] |Fn−1} = E {σ(Xn)
n(z)E(εn|Gn−1)|Fn−1} = 0.

For the first term I1, we have by assumption (H3)(i)

I1 ≤
{

sup
y∈B(x,h)

∣∣r(y) − r(z)
∣∣+ [r(z) − rn−1(z)]

}
E (
n(z)|Fn−1) .

Making use of Lemma A.0.1 and assumptions (H2)–(H3) one obtains, uniformly in z,
E(
n(z)|Fn−1) ≤ C�F(hn), for n large enough, where C� is the positive constant inde-
pendent of z defined in (11). Therefore, we have

E (δn|Fn−1) ≤ ρnC�

{
sup

y∈B(x,h)

∣∣r(y) − r(z)
∣∣+ [r(z) − rn−1(z)]

}
≤ ρnC�

{
2c1hα

n + [r(z) − rn−1(z)]
}
.

Hence,

E (δn [rn−1(z) − r(z)] |Fn−1) ≤ ρnC�
{
2c1hα

n |rn−1(z) − r(z)| − V2/q
n−1(z)

}
≤ ρnC�

[
c1hα

nV
1/q
n−1(z) − V2/q

n−1(z)
]
. (30)

Now, let ξn = Yn − r(Xn), then, for 1 ≤ t ≤ q, one obtains, through cr-inequality

E
(|δn|t|Fn−1

)
≤ ρt

n
Ft(hn)

E
{[
c2t |r(Xn) − r(z)|t + c2t |r(z) − rn−1(z)|t + ct|ξn|t

]

t

n(z)|Fn−1
}

≤ sup
y∈B(x,hn)

∣∣r(y) − r(z)
∣∣t × c2t

ρt
n

Ft(hn)
E
(

t

n(z)|Fn−1
)

+ ρt
n

Ft(hn)
Vt/q
n−1(z)E

(

t

n(z)|Fn−1
)

+ ct
ρt
n

Ft(hn)
E

{
E
[
σ t(Xn)|εn|t
t

n(z)|Gn−1
] ∣∣∣Fn−1

}
.

By using assumptions (H0) and (H3) one gets

E
{
E
[
σ t(Xn)|εn|t
t

n(z)|Gn−1
] |Fn−1

}
ρ−t
n Ft(hn)

≤ ctρt
nμt

[
sup

y∈B(x,hn)
|σ t(y) − σ t(z)| + σ t(z)

]

× E
(

t

n(z)|Fn−1
)

Ft(hn)
.
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From assumption (H2), assumption (H3) allows to write

E
(|δn|t|Fn−1

) ≤ ρt
n

{
c1c2t h

tα
n + c2t V

t/q
n−1(z) + μt(c2h

β
n + C)

} E
(

t

n(z)|Fn−1
)

Ft(hn)

≤ C�ρt
n

{
c1c2t h

tα
n + c2t V

t/q
n−1(z) + μt(c2c2t h

β
n + C)

}
φ1−t(hn). (31)

By substituting (29)–(31) in (28) and taking the conditional expectation, with respect to
Fn−1, in both sides of the inequality, one obtains

E (Vn(z)|Fn−1) ≤ Vn−1(z)
{
1 − ρn

[
qC� − c13

ρn

φ(hn)
− c13ρ

q−1
n φ1−q(hn)

]}

+ c14ρn

(
hα
nV

(q−1)/q
n−1 (z) + ρn

φ(hn)h
2α
n V(q−2)/q

n−1 (z)
+ ρn

φ(hn)V
(q−2)/q
n−1 (z) + ρn

φ(hn)h
qα
n + ρ

q−1
n φ1−q(hn)

)
, (32)

where c13 and c14 are positive constants independent of z. Let 0 < κ0 < qC�/3 be a
constant, define

κs = (q − s − 1)/q and as =
[

κ0qφs (hn)
c14ρs

n
(
s + hα

n
) (
q − s − 1

)]−(q/(s+1))

, s ∈ {0, 1}.

Because n is large enough, so that

c13
ρn

φ(hn)
+ c13

(
ρn

φ(hn)

)q−1
< κ0. (33)

Using the mean value Theorem applied to the function u �→ uκ , we get the inequality

Vκ
n (z) ≤ (1 − κ)aκ

s + κaκ−1
s Vn(z),

which together with (32) and (33) lead to

E (Vn(z)|Fn−1) ≤ Vn−1(z)
[
1 − ρn(qC� − 3κ0)

]
+ c15ρn

⎛⎜⎝ ρq−1φ1−q (hn) h
qα
n +

[
ρn

φ(hn)

]q−1

+hqαn +
[

ρn
φ(hn)h

2α
n

]q/2 +
[

ρn
φ(hn)

]q/2
⎞⎟⎠ , (34)

Now, take expectation of both sides of (34) and denote

Wn(x) = sup
z∈B(x,hn)

E [Vn(z)] .

Now, because the constants in the right-side in (34) are uniformly on z ∈ B(x, hn), then
we get

Wn(x) ≤ Wn−1(x)
[
1 − ρn

(
qC� − 3κ0

)]+ c15ρn

⎛⎜⎝ (
hqαn + 1

) [
ρn

φ(hn)

]q−1

+ (
hqαn + 1

) [
ρn

φ(hn)

]q/2 + hqαn

⎞⎟⎠ .

(35)
Since it is assumed that hn → 0 and by condition (12) we have ρnφ

−1(hn) → 0, as n → ∞,
then Lemma A.0.2 allows to conclude the proof of the first part of this Theorem.
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Now, we are interested in establishing the consistency rate given by (15) in Theorem 3.1.
For this purpose, observe that for n large and κ0 small enough, inequality (35) becomes

Wn(x) ≤ Wn−1(x)
(
1 − ρnqC�

)+ +c15ρn

⎛⎜⎝ (
hqαn + 1

) [
ρn

φ(hn)

]q−1

+ (
hqαn + 1

) [
ρn

φ(hn)

]q/2 + hqαn

⎞⎟⎠ .

Next, for a particular choice of ρn, hn and φ(hn) given in (14), the following inequality:

Wn(x) ≤ Wn−1(x)
(
1 − ρ0qC�

n

)
+ Dn−1−(qα/(2α+ν)), (36)

is satisfied, whereD is a positive constant. Finally, the application of Lemma A.0.3 permits
us to conclude. �

Proof of Theorem 3.2: Set Un = σ 2
n (x) − σ 2(x). From (6), we have that:

E
(
U2
n|Fn−1

) = U2
n−1 + 2Un−1

(
E
[
(Yn − rn−1(Xn))

2 τn|Fn−1
]

−σ 2
n−1(x)E (τn|Fn−1)

)
+ E

{[
(Yn − rn−1(Xn))

2 − σ 2
n−1(x)

]2
τ 2n |Fn−1

}
= U2

n−1 + 2γnUn−1An

Fx(hn)
+
[

γn

Fx(hn)

]2
Bn. (37)

we are now interested in the term

An = E
[
(Yn − rn−1(Xn))

2 
n(x)|Fn−1
]− σ 2

n−1(x)E (
n(x)|Fn−1)

= E
(
ξ2n
n(x)|Fn−1

)+ 2E {[r(Xn) − rn−1(Xn)] ξn
n(x)|Fn−1}
+ E

{
[r(Xn) − rn−1(Xn)]2 
n(x)|Fn−1

}− σ 2
n−1(x)E (
n(x)|Fn−1) .

Observe that a double conditioning with respect to the σ -field Gn−1 allows us to write

E {[r(Xn) − rn−1(Xn)] ξn
n(x)|Fn−1}
= E {E [(r(Xn) − rn−1(Xn)) σ (Xn)εn
n(x)|Gn−1] |Fn−1}
= E {[r(Xn) − rn−1(Xn)] σ(Xn)
n(x)E (εn|Gn−1) |Fn−1} = 0,

by condition (2). Then, by considering again condition (2), and using assumption (H3),
one gets, almost surely,

An = E
(
ξ2n
n(x)|Fn−1

)− σ 2
n−1(x)E (
n(x)|Fn−1)

+ E
{
[r(Xn) − rn−1(Xn)]2 
n(x)|Fn−1

}
= E

{[
σ 2(Xn) − σ 2

n−1(x)
]
E
(
ε2n|Gn−1

)

n(x)|Fn−1

}+ An1

≤
{

sup
z∈B(x,hn)

∣∣σ 2(z) − σ 2(x)
∣∣− Un−1

}
× E (
n(x)|Fn−1) + An1.
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Therefore, we have, by assumption (H3)

An =
[
−Un−1 + O

(
hβ
n

)]
E (
n(x)|Fn−1) + An1. (38)

The term An1 in the right-side of (38) will be studied latter.
Now, let us focus on the term Bn that appears in Equation (37). Using successively the

cr-inequality, we get

Bn ≤ E

{[
2ξ2n + 2

(
r(Xn) − rn−1(Xn)

)2 − σ 2
n−1(x)

]2

2

n(x)
∣∣∣Fn−1

}
≤ 2E

{[
2ξ4n + 4

(
r(Xn) − rn−1(Xn)

)4 +
(
ξ 2n − σ 2

n−1(x)
)2]


2
n(x)

∣∣∣Fn−1

}
≤ 8E

{[
r(Xn) − rn−1(Xn)

]4

2

n(x)
∣∣∣Fn−1

}
+ 4E

[
ξ4n
2

n(x)
∣∣∣Fn−1

]
+ 2E

{[
ξ2n − σ 2

n−1(x)
]2


2
n(x)

∣∣∣Fn−1

}
=: 8Bn1 + 4Bn,2 + 2Bn,3. (39)

The term Bn1 will be considered later, now let us study Bn,2 and Bn,3. Similar to the control
of An, by a double conditioning with respect to the σ -field Gn−1 and making use of the
assumptions (H0) and (H3) and because σ(x) is bounded, one can easily show that

Bn,2 = E

[
σ 4 (Xn) ε4n


2
n(x)

∣∣∣Fn−1

]
= E

{[
σ 4 (Xn) − σ 4(x)

]
E

(
ε4n

∣∣∣Gn−1

)

2

n(x)
∣∣∣Fn−1

}
+ σ 4(x)E

[
E

(
ε4n

∣∣∣Gn−1

)

2

n(x)
∣∣∣Fn−1

]
≤ μ4E

(

2

n(x)
∣∣∣Fn−1

){
sup

z∈B(x,hn)

∣∣∣σ 4(z) − σ 4(x)
∣∣∣+ σ 4(x)

}

=
[
O
(
hβ
n

)
+ C

]
E

(

2

n(x)
∣∣∣Fn−1

)
. (40)

Turning to the term Bn,3, the same arguments as in Bn,2, with the help of cr-inequality lead
to

Bn,3 ≤ 2E
{[

ξ2n − σ 2(Xn)
]2


2
n(x)

∣∣∣Fn−1

}
+ 2E

{[
σ 2(Xn) − σ 2

n−1(x)
]2


2
n(x)

∣∣∣Fn−1

}
=:

[
O(h2βn ) + C

]
E

(

2

n(x)
∣∣∣Fn−1

)
+ U2

n−1E
(

2

n(x)
∣∣∣Fn−1

)
. (41)

Consequently, Equations (39)–(41) allow to write

Bn = 8Bn1 +
[
O
(
h2βn

)
+ O(hβ

n ) + U2
n−1 + C

]
E

(

2

n(x)
∣∣∣Fn−1

)
. (42)
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Now, we replace, in the decomposition (37), An and Bn by their expressions, given by (38)
and (42), and one obtains

E
(
U2
n|Fn−1

) = U2
n−1 + 2γnUn−1An

Fx(hn)
+
(

γn

Fx(hn)

)2
Bn

≤ U2
n−1 + 2γnUn−1

⎧⎨⎩
[

− Un−1 + O
(
hβ
n

) ]
E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

+ An1

Fx(hn)

⎫⎬⎭
+ γ 2

n

⎧⎨⎩ Bn1
F2x(hn)

+
[
O
(
h2βn

)
+ O(hβ

n ) + U2
n−1 + C

]
E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

⎫⎬⎭
= U2

n−1

⎧⎨⎩1 − 2γn
E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

+ γ 2
n

E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

⎫⎬⎭
+ Un−1 γn

⎧⎨⎩O (
hβ
n

) E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

+ An1

Fx(hn)

⎫⎬⎭
+ γ 2

n

⎧⎨⎩ Bn1
F2x(hn)

+
[
O
(
h2βn

)
+ O(hβ

n ) + C
]

E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

⎫⎬⎭ . (43)

Let us set

qn =
⎡⎣O

(
hβ
n

)
E

(

n(x)

∣∣∣Fn−1

)
+ An1

Fx(hn)

⎤⎦ q−1
0 , q0 ∈ (0, 1).

Because Un−1 ≤ 1
2 (qn + (U2

n−1/qn)), one gets

Un−1 ≤ 1
2

⎧⎨⎩O
(
hβ
n

)
E

(

n(x)

∣∣∣Fn−1

)
+ An1

Fx(hn)q0
+ Fx(hn)q0U2

n−1

O
(
hβ
n

)
E

(

n(x)

∣∣∣Fn−1

)
+ An1

⎫⎬⎭ .

(44)
By replacing (44) in (43), one obtains

E

(
U2
n

∣∣∣Fn−1

)
≤ U2

n−1

⎧⎨⎩1 − 2γn
E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

+ γ 2
n

E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

+ γnq0
2

⎫⎬⎭
+ γn

2q0

⎧⎨⎩O
(
hβ
n

)
E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

+ An1

Fx(hn)

⎫⎬⎭
2

+ γ 2
n

⎧⎨⎩ Bn1
F2x(hn)

+
[
O
(
h2βn

)
+ O(hβ

n ) + C
]

E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

⎫⎬⎭ .
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Now, observe that Lemma A.0.1 allows us to bound the following quantities:

E

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

≤ C�,
E

(

2

n(x)
∣∣∣Fn−1

)
F2x(hn)

≤ C�φ−1(hn)and
E2

(

n(x)

∣∣∣Fn−1

)
Fx(hn)

≤ C�,

where C is a positive constant independent on x. Then, one can easily get

E

(
U2
n

∣∣∣Fn−1

)
≤ U2

n−1

{
1 − γn

[
2C� − q0

2
− C�γnφ

−1(hn)
] }

+ γn

[
O(h2βn ) + O

(
φ−2(hn)

)
A2
n1

]
+ γ 2

n

[
O
(
φ−2(hn)

)
Bn1 + O

(
h2βn φ−1(hn)

)
+ O

(
hβ
nφ−1(hn)

)
+ O

(
φ−1(hn)

)]
.

Let us apply the expectation on both sides of the previous inequality and denoteKn(x) :=
E(U2

n). Then, since it is supposed that γnφ−1(hn) → 0, we obtain

Kn(x) ≤ Kn−1(x)
{
1 − γn

[
2C� − q0

2

]}
+ O

(
γnφ

−2(hn)
)
E
(
A2
n1
)

+ O
(
γ 2
nφ−2(hn)

)
E (Bn1) + O

(
γnh

2β
n

)
+ O

(
h2βn γ 2

nφ−1(hn)
)

+ O
(
hβ
nγ 2

nφ−1(hn)
)

+ O
(
γ 2
nφ−1(hn)

)
. (45)

Now, to achieve the proof of this theorem, we need to control, asymptotically, the quantities

E
(
A2
n1
)
:= E

{
E
2
[(

r(Xn) − rn−1(Xn)
)2


n(x)
∣∣∣Fn−1

]}
and

E(Bn1) := E

{
E

[(
r(Xn) − rn−1(Xn)

)4

2

n(x)
∣∣∣Fn−1

]}
.

To this end, observe that by the Cauchy–Schwarz inequality and the properties of the
conditional expectation, one can write

E

(
A2
n1

)
≤ E

(
Bn1

)
= E

{
E

[(
rn−1(Xn) − r(Xn)

)4

2

n(x)
∣∣∣Fn−1

]}
= E

[(
rn−1(Xn) − r(Xn)

)4

2

n(x)
]

≤
{

sup
z∈B(x,hn)

E

[
rn−1(z) − r(z)

]8}1/2

× E
1/2
(

4

n(x)
)
. (46)
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Theorem 3.1 insures that

sup
z∈B(x,hn)

E

[
rn−1(z) − r(z)

]8 → 0 as n → ∞

and, by Lemma A.0.1 and assumption (H2), we have

E

(

4

n(x)
)

= O
(
φ(hn)

)
.

Then we conclude that E(A2
n1) → 0 and E(Bn1) → 0 as n → ∞. Finally, under condi-

tions (16), and by making use Lemma A.0.2, one getsKn(x) → 0 as n → ∞.
Next, to provide the convergence result with rate, stated in (18), observe that if

hn = h0n−1/2β+ν , then similar to (15), we have that:

E

(
A2
n1

)
≤ E

(
Bn1

)
= O

(
φ(hn)n

− 4α
2β+ν

)
,

which together with (46) and (17) imply that for n large and q0 small enough

Kn(x) ≤ Kn−1(x)
(
1 − 2C�γn

)+ O
(
γnn−(4α/(2β+ν))φ−3/2(hn)

)
+ O

(
γnh

2β
n

)
+ O

(
γ 2
nφ−1(hn)

)
≤ Kn−1(x)

(
1 − 2C�γ0

n

)
+ D

n

[
n(−8α+3ν)/(2(2β+ν)) + n−(2β/(2β+ν))

]
.

≤ Kn−1(x)
(
1 − 2C�γ0

n

)
+ D

n1+min{(8α−3ν)/(2(2β+ν)), (2β/(2β+ν))} . (47)

where D is a positive constant. The application of Lemma A.0.3 conducts to the desired
result. �

Proof of Corollary 3.2.1: One can easily prove the result of the corollary by following
similar steps as those in Theorem 3.2. �

Notes

1. Available on the website: www.lsp.ups-tlse.fr/staph/npfda
2. https://cran.r-project.org/web/packages/aire.zmvm/aire.zmvm.pdf
3. The characteristics of the computer we used to perform these forecasts were CPU: Duo E4700

2.60GHz, HD: 149 Go, Memory: 3.23 Go.

Disclosure statement
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Appendix

We recall the following technical lemma which is proved by Laïb and Louani [17].

Lemma A.0.1 (see [17]): Assume that conditions (H1), (H2)(i), (H2)(ii) and (H2)(iii) hold true. For
any real numbers j ≥ 1 and 1 ≤ k ≤ 2 + δ with δ > 0, as n → ∞, and for any fixed i ∈ 1, . . . , n, we
have

(i) 1/φ(h)E[
j
i(x) | Fi−1] = Mjfi,1(x) + Oa.s.(gi,x(h)/φ(h)).

(ii) 1/φ(h)E[
j
i(x)] = Mjf1(x) + o(1).

(iii) 1/φk(h)[E(
1(x))]k = Mk
1f

k
1 (x) + o(1).

Next, let us introduce the following Lemmas proved in [37] which play a key role in our proofs.

Lemma A.0.2 (see [37]): Let uk+1 ≤ qkuk + αk, 0 ≤ qk < 1, αk ≥ 0,
∑∞

k=0(1 − qk) = ∞, αk/

(1 − qk) → 0. Then limk→∞uk ≤ 0. In particular if uk ≥ 0, then uk → 0.

Lemma A.0.3 (Chung’s Lemma, [37]):
Let uk ≥ 0 and

uk+1 ≤
(
1 − c

k

)
uk + d

kp+1 , d > 0, p > 0, c > 0.

Then,
uk ≤ d(c − p)−1k−p + o(k−p), for c > p.
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