Aggarwal, C.C., (2007) Data streams: models and algorithms, , Springer, New York
Amiri, A., Recursive regression estimators with application to nonparametric prediction (2012) J Nonparametr Stat, 24, pp. 169-186
Amiri, A., Crambes, C., Thiam, B., Recursive estimation of nonparametric regression with functional covariate (2014) Comput Stat Data Anal, 69, pp. 154-172
Cao, Y., He, H., Man, H., SOMKE: kernel density estimation over data streams by sequences of selforganizing maps (2012) IEEE Trans Neural Netw Learn Syst, 23 (8), pp. 1254-1268
Dedecker, J., Doukhan, P., Lang, G., Leon, J.R., Louhichi, S., Prieur, C., (2007) Weak dependence: with examples and applications. Lecture Notes in Statistics, , Springer, New York
Domingos, P., Hulten, G., A general framework for mining massive data stream (2003) J Comput Graph Stat, 12 (4), pp. 945-949
Doukhan, P., Louhichi, S., Functional estimation of a density under a new weak dependence condition (2001) Scand J Stat, 28 (2), pp. 325-341
Doukhan, P., Neumann, M.H., The notion of ψ -weak dependence and its applications to bootstrapping time series (2008) Probab Surv, 5, pp. 146-168
Fan, J., Gijbels, I., Variable bandwidth and local linear regression smoothers (1992) Ann Stat, 2, pp. 2008-2036
Fan, J., Gijbels, I., Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaption (1995) J R Stat Soc B, 57 (2), pp. 371-394
Fan, J., Gijbels, I., (1996) Local polynomial modeling and its applications, , Chapman and Hall, London
Fan, J., Gijbels, I., Hu, T.C., Huang, L.S., A study of variable bandwidth selection for local polynomial regression (1996) Stat Sin, 6, pp. 113-127
Gu, J., Li, Q., Yang, J.C., Multivariate local polynomial kernel estimators: leading bias and asymptotic distribution (2015) Econom Rev, 34 (6-10), pp. 979-1010
Hansen, B., Uniform convergence rates for kernel estimation with dependent data (2008) Econom Theory, 24, pp. 726-748
Huang, Y., Chen, X., Wu, W.B., Recursive nonparametric estimation for time series (2014) IEEE Trans Inf Theory, 60 (2), pp. 1301-1312
Li, J., Zheng, M., Robust estimation of multivariate regression model (2009) Stat Papers, 50 (1), pp. 81-100
Liang, H.Y., Baek, J.I., Asymptotic normality of conditional density estimation with left-truncated and dependent data (2016) Stat Papers, 57 (1), pp. 1-20
Masry, E., Multivariate regression estimation local polynomial fitting for time series (1996) Stoch Process Appl, 65, pp. 81-101
Masry, E., Multivariate local polynomial regression for time series: uniform strong consistency and rates (1996) J Time Ser Anal, 17, pp. 571-599
Nze, A.P., Bühlmann, P., Doukhan, P., Weak dependence beyond mixing and asymptotic for nonparametric regression (2002) Ann Stat, 30 (2), pp. 397-430
Rio, E., (2000) Théorie asymptotique des processus aléatoires faiblement dépendants, , Springer, Berlin
Robbins, R., Monro, S.A., A stochastic approximation method (1951) Ann Stat, 22 (3), pp. 400-407
Ruppert, D., A Newton-Raphson version of the multivariate Robbins-Monro procedure (1985) Ann Stat, 13 (1), pp. 236-245
Ruppert, D., Wand, P., Multivariate locally weighted least squares regression (1994) Ann Stat, 22, pp. 1346-1370
Ruppert, D., Sheather, S.J., Wand, P., An effective bandwidth selector for local least squares regression (1995) J Am Stat Assoc, 90, pp. 1257-1270
Vilar, J.A., Vilar, J.M., Recursive estimation of regression functions by local polynomial fitting (1998) Ann Inst Stat Math, 50 (4), pp. 729-754
Vilar, J.A., Vilar, J.M., Recursive local polynomial regression under dependence conditions (2000) Test, 9 (1), pp. 209-232
Xu, M., Ishibuchi, H., Gu, X., Wang, S., Dm-KDE: dynamical kernel density estimation by sequences of KDE estimators with fixed number of components over data streams (2014) Front Comput Sci, 8 (4), pp. 563-580
Zhou, A., Cai, Z., Wei, L., Qian, W., M-kernel merging: towards density estimation over data streams. In: Proceedings of the 18th international conference on database systems for advanced applications (2003) pp 285–292