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Abstract In this paper we study a local polynomial estimator of the regression func-
tion and its derivatives. We propose a sequential technique based on a multivariate
counterpart of the stochastic approximation method for successive experiments for
the local polynomial estimation problem. We present our results in a more general
context by considering the weakly dependent sequence of stream data, for which we
provide an asymptotic bias-variance decomposition of the considered estimator. Addi-
tionally, we study the asymptotic normality of the estimator and we provide algorithms
for the practical use of the method in data streams framework.
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1 Introduction

Streaming data, or data streams, are massive data arriving in streams, and if they are not
immediately processed or stored, then they are lost forever. Large organizations, such
as financial companies in financial markets, generate hundreds of millions of records
of transactions in a short time, and many scientific studies also generate gigabytes of
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data in minutes. In many real situations, such as scientific and real applications, large
amounts of raw data can be collected extremely easily such that experiments typically
yield a considerable number of data points. Data streams naturally arise in many fields,
such as oceanography, climatology, Internet and web traffic, finance, and security. For
example, with the advances in modern technology, one can imagine a sensor sending
back to a base station a reading of the ocean surface temperature every second or less.
The data produced by this sensor are a stream of real numbers. As another example,
consider a sensor that reports the surface height of the ocean rather than temperature.
The surface height of the ocean varies quite rapidly compared with temperature, and
thus, the sensor might return a reading every tenth of a second. Moreover, to learn
something about ocean behavior, we might want to deploy many sensors, each sending
back to the central node a stream at a rate of ten per second. In these situations, the
data arrive so rapidly that it is impossible for the user to store all the data on a disk (as a
traditional database) and then interact with them later. Consequently, to address such
large data, the traditional nonparametric techniques require a considerable amount
of time to be computed and thus become useless in practice if real-time forecasts
are expected. Therefore, the development of processing methods and analyzing these
data streams effectively and efficiently have become challenging problems in statistics
and computational science. A substantial amount of literature has been dedicated to
providing specific methods for these particular data. We refer the readers to Aggarwal
(2007) and Domingos and Hulten (2003) for a detailed overview. Recent advances on
this topic were the focus of the papers of Zhou et al. (2003), Cao et al. (2012), and Xu
et al. (2014), which provided kernel density estimation methods over data streams.

In this paper, we are interested in the regression model, and we investigate how to
provide simultaneously an estimation of a nonparametric regression function and its
derivatives from a locally weighted least squares fit over the data streams. The regres-
sion model that we consider is a statistical relation that describes the link between
two random variables: a response variable ¥ € R and a regressor X € R? (d > 1),
that is, Y = r(X) + &, where ¢ is an error random variable. Regression estimation is
defined as the construction of an estimate of the regression function r from observed
sample data of (X, Y). The statistics community has devoted many efforts to pro-
viding an estimation of the regression function and its derivative using parametric,
semi-parametric and nonparametric approaches for univariate and multivariate data.
Parametric regression estimation is conducted under the assumption that the regres-
sion function admits a known parametric form, such as a polynomial, whereas in
nonparametric estimation, no such assumptions are required. Because the statistical
link between two random data streams is completely unknown in most applications,
nonparametric regression estimation has found a considerable number of applications
in many domains. Local polynomial kernel estimation is a classical nonparametric
technique for studying the regression model, and it has recently attracted considerable
attention among statisticians and econometricians. We refer the readers to the mono-
graph of Fan and Gijbels (1996) for an overview on both the theoretical and practical
aspects of the local polynomial method. The principal advantage of this method is its
ability to provide simultaneously an estimation of a nonparametric regression func-
tion and its derivatives. Moreover, the local polynomial method has better estimation
accuracy at the boundary region of the data support and minimax efficiency over
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the local constant estimator (Fan and Gijbels 1996). Some significant references on
the subject are Fan and Gijbels (1992, 1995), Ruppert and Wand (1994), and Ruppert
etal. (1995). The local polynomial estimator for a univariate nonparametric regression
model was studied by Fan et al. (1996), who derived a bias-variance representation. In
the multivariate case, Masry (1996a, b) derived the rate of convergence and the asymp-
totic normal distribution of the local polynomial regression estimator for time series
data. Gu et al. (2015) extended the result of Masry (1996b) to obtain explicit leading
bias terms for the entire vector of the local polynomial estimator. Hansen (2008) pro-
vided uniform consistency results for kernel estimators of density with applications
to Nadaraya—Watson and local polynomial regression estimators under strong mixing
conditions. Recently, Liang and Baek (2016) proposed a Nadaraya—Watson type and
local linear estimators of conditional density function and established their asymptotic
normality with the left-truncated and «-mixing data. Robust estimation of multivariate
regression model using kernel weighted local linear regression was investigated by Li
and Zheng (2009). As indicated above, in the data stream framework, many observed
data points can be available in a very short period of time. Consequently, the computa-
tional time of a standard local polynomial estimator can quickly become large in such
situations, and thus, a real-time regression estimation is increasingly more difficult to
obtain as the time increases. This situation arises from the fact that such a standard
local polynomial estimator has to be completely recomputed when a new observation
comes into the picture. This is why we consider in this paper the local polynomial
estimation problem in the context of data streams. We propose a sequential technique
based on a multivariate counterpart of the stochastic approximation method for suc-
cessive experiments proposed in Robbins and Monro (1951) for the local polynomial
estimation problem. Our estimator is a recursive version of the traditional estimator
based on the locally weighted fitting adapted to the multivariate data stream model.
Its construction is based on the concepts developed in different contexts by Vilar and
Vilar (1998, 2000) for locally weighted smoothers and by Amiri (2012), Amiri et al.
(2014), and Huang et al. (2014) for kernel smoothers.

2 Locally weighted regression for data streams
2.1 Presentation of the model

Let Wy, ..., W, represent a sequence of observed arrays of the form
W, = {(th, Yio), ..., (XtN,» YtN,)}, t=1,...,n,

where the sub-sample (X;1, Y1), ..., (X;n,, Yin,) is a sequence of bivariate random
variables identically distributed as a stationary stochastic process (X, ¥) in R? x
R (d = 1). We assume that the (X;;, Y;;)’s have a common joint density fx,y)(:, -)-
In the data stream framework considered here, W; is called a window and N; is its
width, which is obviously supposed to be an integer. If n windows are considered,
then the sample size is N := _1 N;. Additionally, when the windows W,’s have
widths N; = 1 forallt = 1, ..., n, the sample size is equal to the number of windows
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n and the windows Wy, ..., W, play the role of the observations. The main objective
of this paper is to provide an estimator of the regression function r(x) = E (Y|X = x)
and its derivatives that can be easily updated when a new set of observations W; is
available while retaining nice theoretical properties with respect to natural competitors.

2.2 Multivariate regression estimation
Givenx € R and p € N, if we assume that the regression function has derivatives of

total order p + 1 at x, then the multivariate Taylor formula provides an approximation
of r(X) by a multivariate polynomial of total order p as:

k|
rX) =r®+ > L0 (x —x)k + > aX—x) X—x* (1)

I axk
{keN? : 1<[k|<p} ko ox Ik|=p
and)ym er(X — x) = 0, where, throughout the paper, for any d-tuples k =
—X
(ki,....kq) e N andx = (x1, ..., xq) € R?, we note that

d

d d
k| => ki kl=][]k! and x*=]]xF.
i=1 i=1

i=1

Taking into account the observations available in Wy, ..., W,,, we can derive the
locally weighted least squares estimators of the quantities

1 oIkl
T k! oxk

Px x), O0=Ilkl=p

by minimizing the objective function

2
n N
k
wsSB=> > 1%i— D AXi-x) ol®. @
=1 j=1 {keNd : 0<|k|<p}
where the weights a)t(;) are defined by
1 X;i—x
() oy _ 1

where K is a kernel function, #, is a bandwidth parameter, and 8 = (,Bk, 0 < K|
< p)T.Foru =0,...,p,let

p J—
Luz{keNd, |k|=u} and q:Z(:)(”;il 1).
=
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Define L as the set of g d-tuples obtained by rearranging the elements of the sets
Lo, ..., L, with respect to the lexicographic order and concatenating them as a tri-
angular array. Let g represent a continuous bijective function such that:

g:L—{0,...,q9—1}

k—1i ’ )
where i denotes the index of the d-tuples k in the set L. For example, for simplicity,
consider the basic bivariate case (d = 2). Then, we have

(0,0),

0, D, (1,0),

0,2), (1, 1), (2,0),
L=1(0,3), (1,2), 2, 1), (3,0, )

(Ovp)a (17p_1)a (27p_2)7 (Svp_s)v 7(p70)

and the function g can be defined as

£(0,0) =0,

gki —1,0)+k +1 if kh =0 and ki > I,
(0. ka—1)+k if ki =0 and k> I,
gkl —1Lka—1)+2(ki +k) else.

g (ki, ko) =

1

Because in (4), g is a bijective function, g~ exists, and we note that g’1 (i) = [i] for

anyi =0,...,qg — 1.

According to the above notation, forany z € {1, ..., n}, one can define the matrices
;s 1 X =0l (X —xla1 X
(01 1 X -0 (X —x)le—l] T
B=|: and X, =]. ="
Big-11 ' [ lg—1] :
1 (XtNt - X) e (XtNt - X) XI-II-V,

Finally, set

T ) . ) (n)
y,:(Ytl,...,Y[Nt) and €; :dlag(a)tl ,...,a)tN[), t=1,...,n.

Then, the derivative of (2) with respect to 8 is simply the empirical counterpart of

n
2> NE (wﬁl")x,lx,{,s —m (Y,) wz(l")Xn) —2F (B).
t=1
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By solving the equation F (B) = 0, we obtain the locally weighted estimator of
B, based on Wy, ..., W, and then, we can deduce the estimator of the regression
function and its derivative as

K

olkly
S = k'Biihop for 0 < [K| < p,

where B};()k)] denotes the k-th component of B 1t follows that the problem of esti-
mating the regression and its derivative can be viewed as a particular case of the more
general issue addressed by stochastic approximation methods because g is readily
the unique root of the function F. Therefore, B can be estimated recursively using
the multivariate Newton—Raphson procedure (see Ruppert 1985), as follows. Let
By = (Bfg]), e Al(:;)fll)T be an estimator of 8 based on Wy, ..., W,. Using the
fact that Z—; B) = z:l_l N,E(a)t(l”)thXt-ll—), the multivariate recursive procedure to

estimate B is defined as
Bu=Bu1 = DuFy (Bui) (5)

where D,, is an estimate of the matrix [% (,3)]_1 basedon Wy, ..., W, and I?,, (-)isan
estimator of F (-) based on the sub-sample W,, only, that is, the observations received
at time n. Easy computations show that the empirical counterparts of [%(ﬁ )]~! and
F (B) are respectively defined by

-1
n
D, = (Z X,TQ§")X,) and
t=1
~ ~ _~ -1
Fn (ﬂn—l) = X,,TQ,E")/'\% |:/3n—1 - (XJQS”XH) X,IQ,S")yn:| ,
which together with (5) indicate that

E’l = (]q - Fn)B\nfl + Fnﬁn, (6)

where

-1
n
~ —1
r, = (z X[Tsz,("))(,) xTemx,, B, = (X,]Q,g"w,,) xTamy,

t=1

and I, is the unit matrix of size g.

The vector B, is simply the weighted least squares estimator of B based on
sub-sample W, := {(X;1, Y51), ..., (Xun, s Yan,)}. The expression (6) bears aresem-
blance in its structure to the exponential smoothing scheme, except for the fact that in
(6), the smoothing parameter is a matrix. Additionally, this relation can be understood
as a multivariate Robbins—Monro recursivity (see Robbins and Monro 1951), with a
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step size in a matrix form. Note that easy computations show that the estimator //3\,1
appearing in (6) has the form

n -1 n
P = (Z XITQl(n)Xt) D xTeM Y =5, )

=1 t=1

Finally, Eq.(6) indicates how to update the recursive estimator from its immediate
past when a new stream W, is recorded. However, the usefulness of (6) presents
some drawbacks because it is necessary to recalculate the inverse of the matrix S,

appearing in the expression of I';,. To overcome this issue, by setting V; = N (”)an),

1 n
S, can be reformulated as S, = N0 Z XZT V: ;. Using the relation
=1

Nn+1 1 T
Sn+1 = [1 - m} Sn + WXnHVnHXnH

and the Woodbury formula (see Woodbury 1950), we found that

_ Ny+1 1 1 vl 1/2 ~1
s;) = (1+N(n))[sn AT AT AR ATl P

where

——vIBx, s AT v

C = INn-H + n+1

1
N@®)
is the so-called capacitance matrix. Finally, note that when p = 0, the solution esti-
mator obtained in the optimization problem in (2) coincides with the recursive version
of the Nadaraya—Watson kernel estimator defined by

Y, X;i—x

Zt 12—1 htliK( tj, )
X;i—x\ "’

i K (3)

Bo(x, n) = 8)

3 Asymptotics with respect to the number of streams

For our asymptotic analysis, we will present our results in a more general context
by considering the weakly dependent sequence of stream data {W,, r € N}. The
weak dependence is more widely applicable than many existing dependence measures,
such as mixing, because it covers a large class of processes. For instance, mixing is
considered to be useful for characterizing the dependence between time series data
because it is fulfilled for many classes of processes and because it allows deriving
the same asymptotic results as in the independent case. However, some classes of
processes that are of interest in statistics, such as certain AR(1)-process, are not
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mixing but fulfill weak dependence conditions (see Nze et al. 2002; Doukhan and
Neumann 2008). For an extensive introduction and further information on tools for
attacking weakly dependent processes, we refer the readers to Rio (2000); Dedecker
et al. (2007). Given a function W : N2 x R%_ — R, we extend the notion of W-weak
dependence into the streaming context. First, let us consider for any integers u, v and
k the set

u v
s, t,j,k) e N x NV x 1,...,Ng I x 1,...,Ns t,
Fuvdy = | SO0 ,El{ 5} qgl{ ul

suchthat s; <---<s, <s,+k<tp <--- <ty

Stream data {W,;, ¢ € N} are said to be W-weakly dependent if there exists a decreasing
sequence (€x)reN tending to 0 as k — oo for which

‘COV [go (Wi Weia)s 81 (Wikgs oo thkv)] < \V(u, v, L(go), C(gl))ék,
9
for any (sq, ..., Su, f1y .-y tos Jlse-ns juskiy--- ky) € T'(u,v,k), and arbitrary

measurable functions g; : R*(0=D+v 5 R ;i ¢ {0,1}. In (9), L(g;) denotes the
Lipschitz modulus of continuity of g;, that is,

L(g) = sup lgi (%) — & (¥)I o (10)
xzy  IX=yl

and W;; = (X,j, Ytj) ,j=1,..., Ny, t = 1,...,n. In the following, we will denote
by fx the marginal density of X and o}% x) =E(Y — r(x)]2|X = x) the conditional
variance of Y given X = x.

3.1 Assumptions and main results

We will assume that the following assumptions hold.

(A1) N, is apositive sequence such that N,, — « for some (common) constant k > 1
asn — o0.
(A2) Thekernel function K is bounded and continuously differentiable, with compact
support.
(A3) The bandwidth sequence (%,,) is positive such that
() hy | 0and nh¢ — oo asn — oo.
.. . 1 n h J
(i) Forany j <4p, & > (ﬁ) — 0j <ooasn — oo.
(A4) The stream {W,, t € N} is W-weakly dependent, with ¥ (u, v, w, x) = uvwx.
(AS5) Foreach (t,s) € {1,...,n}?and (j, £) € {1,..., N;} x {1, ..., Ny}, the joint
probability density function (p.d.f) f(X/_/,Xx ) of (X, Xy¢) exists and satisfies

sup f(xquxw)(xl, x2) — fx(X1) fx(x2)| < C forsome C >0 and for all xj,x, € RY,
(., )#(s.0) ‘
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Assumption (A1) is trivially satisfied in the traditional case N; = 1forallt =1,...,n
such that the framework considered in this paper remains more general. Moreover, if

Assumption (A1) holds, then the sequence yi, ..., y; defined by y, = Z,N’ N is

such that limy, 00 > 1 y? < ooand lim,_ > ' ¥ = oo. The above condition
is a traditional one in the stochastic approximation framework.

Assumptions (A2) and (A3)(i) are usual assumptions for kernel estimation, whereas
(A3)(ii) is a technical assumption that arises from the fact that we need to asymptoti-
cally control the update of the bandwidth. Moreover, if Assumption (A2) holds, then
for any continuous function ¥, there exist cg, c1, ¢3 € R such that for any i € N9 and
jeR

sup )uin(u)‘:cl and  sup |9 = co. (11)

lo—x]|<coh; lu—xll=<coh;

Now, before stating the main theoretical results of this paper, let us define

1 ! al i l X['_X . d
s;,i:WZZ(xtj—x) ﬁK( jh, )y,}, ieN re{01}. (12)

t=1 j=l1

Then, the matrices S,, and T, defined in (7) can be rewritten as

0 0 0 1
Sw 014001 Sn 01411 - S [0]+[g—1] Sy.101
so[u+{m So[u+n] -~~52[u+{ 1 Si[u
n, s s - s
Si=1. . S and T, =| .
0 0 1
Sn,lg—11+101 Sn,lg—11+11 == Sn,lg—11+[g—1] Sn.lg—11

(13)
In the following result, we provide an asymptotic bias—variance decomposition of (7).

Theorem 3.1 Assume that Assumptions (Al)—(A3) hold. Then,

(a) for every continuity point X of fx and for eachi € N¢ with 0 < [i| < 2p,

lim 4 WE [s,?,i] = )iy i fx (%), (14)

n—o0

where i = / uiK(u)du.
R4

(b) Moreover, if (A4) and (AS5) are satisfied and

lim n* Z € =0 forsome a > 3+ 4fi, (15)
n—o0
k>n+1
then s
tim k2 Var (50,) = 202 v, (16)
n—oo ’ K

@ Springer



A. Amiri, B. Thiam

where yj =/ uiKz(u)du.
Rd

If we set
H, = diag (1, hn, B2, ... ,hZ_l),
B and V represent ¢ x g matrices defined by the entries:

2 2
bij = 9[i—1]+[j—1]“[i—1]+[j—1] and
Vij = Ofi—1)420j—11-dV2li-1]+2[j-1], 1 =i, j =<q;
then, Theorem 3.1 can be expressed in the following matrix form.

Corollary 3.1 Under the assumptions of Theorem 3.1, we obtain

I fx®
nhd

n

MSE(S,) = H, [fx(x)zB + Vi| Hy+o0p(ly), as —oco.  (17)

Note that in (17), the notation MSE(S),) refers to a ¢ x ¢ matrix where the (7, j)-th
component is the mean square error of s° 1 <i, j < q (recall that for any

n i1+ =11
i=0,...,q9 — 1, [i] corresponds to the i-th d-tuples in the set L). In other words,
H7's,H ' 25 B (x), (18)

where the notation —> is the convergence in the mean-square sense. Next, to provide
the asymptotic properties of 7, the following additional assumptions and notations
are required.

2
(A7) Given (¥, Yse), (6.9)ef1, .on} " and (ooeft v < f1ov,
the conditional p.d.f. of (X;;, Xy¢) exists and satisfies

f(X,_,-,X;e)I(Y,_/,Yce)(“17 w|vy, 1) < C < oo forany (uj,up) € R? x RY.

Moreover, the conditional p.d.f. of X given Y exists and satisfies fx|y(u) <
C < oo.
(A8) Either
E (|Y|‘S) < oo forsome § > 2 (19)

or there exist A, i > 0 such that

Elexp (A|Y|“)] < 00. (20)

(A9) The conditional variance a% is continuous and bounded away form zero at x.

(A10) There exists y > ﬁ such that nth" — 0asn — oo forsome 0 < v < 1.
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Assumptions (A7) and (AS8) are technical conditions that are imposed to obtain the
proofs of our results. Let us consider the centered version of 7,, defined by

;
T = (t:’[o],...,t:,[q_l]) , @1)

where

R i1 (X —x _
tr= =@ ZZ (X;; —x)' EK( jht ) [Y,j — r(X,j)] for 0 < |i| < p.
t=1 j=1

In the following results, we establish the asymptotic expression of the variance—
covariance matrix of 7," and its asymptotic normality.

Theorem 3.2 Assume that (Al)—(A10) hold. If we denote by Cov(T") the variance—
covariance matrix of T,, then

1 o2(x) fx(x)

d
nhé

Cov(T}) = H,VH, +0,(I;), as — oo, (22)

where H, is the diagonal matrix defined in Corollary 3.1 and V is the q X q matrix
defined by its (i, j)-th component

Vij = O 114+lj—1l—dVli-11+1j—11» Li=1,....q.

To obtain the asymptotic normality of the estimator, we will assume that the fol-
lowing additional conditions hold:

(A11) The bandwidth sequence (k) is such that

(i) for any sequence of integer numbers (u,) and (v,) with u, ~ v, = hy, ~
hy, -

(ii) thereexistsO0 < v < 2/ (5d + 12p + 8) suchthatn"h,, — ¢ > Oasn — oo.

Theorem 3.3 Assume that (Al)—(All) hold. In addition, suppose that the process
{W;, t € N} is W-weakly dependent with

& = 0(e_pk) forsome p>4(d+p+1)/G5d+12p+8).

Then,
2
T 2 N( M) 23
K

where V is given in Theorem 3.2 and 0, is the q-dimensional null vector.
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Let us now study the joint asymptotic normality of the estimator En. Because
ris p + 1 times differentiable, expanding r(X;;) in a Taylor series around x for
IX;; —x|| < h; indicates thatforany s =1,...,nand j =1,..., N,

1 okl
rXp = Y ™ (X %)
{keNe : 0<[k|<p}

1 9kl p
+ > ok ™ (X —x) + o(h?*h.
{keN¢ : |k|=p+1}

p+d
d—1 6 :
p + 1 using the lexicographic order introduced in Sect. 2.2, refer to them as a column
vector b1 1(x) and define the matrix A whose (7, j)-th component is

Arrange the npyq = ( ) elements of the derivatives ¢ K (x) such that |k| =

aij = O —14+[j—1M1li—11+[j—1] With 1 <i<g and g+1<j<qg+np+1

Then, in the following corollary, we obtain the asymptotic normality of our estimator.

Corollary 3.2 Under the assumptions of Theorem 3.3 and h, = O (n~!/(@+2P+2)),
we have

[ond [ 1. (B - D op(X) Ly
nh [Hn (Bu—B)—ni*'B 1Abpﬂ(x)] —>N(0,,,K§(X)B 'vB!).

In particular, we can deduce from Corollary 3.2 the estimators of individual partial
derivatives of the regression function 7 (x) via the components of the vector §,,.

Corollary 3.3 Under the assumptions of Theorem 3.3 and hy, = O (n~!/(@+2p+2)),
foranyi €{0,---,q — 1} such that g~ (i) = [i], we have

[ 5 <) 7 (57 )
(0,28 (), )

where (B~ 17B’1)i ; is the (i, i)-th diagonal element of the matrix B~'VB~! and
(B~'Abpy (x))i is the ith element of the vector B~ Ab 4 (x).

4 Applications
4.1 An algorithm for numerical computations

In this section, we present an algorithm for numerically computing the value of the
local polynomial kernel regression.
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RLL estimator
1. | Fix an integer ng > 1 (resp. n > nq) as the starting (resp. the ending) time
of the estimation procedure;
2. | Choose a tolerance level € > 0 and a kernel K ;
3. |Initialization: k —> ny
(a) | observe the windows Wy, ..., Wi;
(b) | compute N®, the total number of observations available at the time k.
(c) | compute the bandwidth hy;
(d) |fort =1,...,k:
i. | compute the sample size N, of the sub-sample W;;
ii. | extract the design matrix X; and the response vector Y;;
iii. |for j=1,...N;:
| compute the weights a)(k) (x)
| end for

iv. ‘ define the diagonal matrix of weights ng) = diag (a)t(lf) x), ...,
k
o @);
end for;
concatenate the matrices of weights in a quasi-diagonal matrix Qf =
diag (Q(k) . Q,({k) ;

(f) | define the initial design matrix and response vector:

(e)

X Vi
g=| | aari=):
X Yk
| hematrices T = X QYIS = X' Q[X] and ST
(g) |compute the matrices Ty = kyk, k=&, X, an A
(h) |c0mpute the recursive estimator as ,Bk =S, "7y

(i) |save Nk, hg, Sk_l, ,B\k
4. |ifk+1<n:
(a) |k — k+1
i. |observe Wy,
ii. |compute the sample size Ny of the sub-sample Wi,
iii. |update the total number of observations: N® = N®=D 1 N,
iv. | extract the current design matrix Xy and the response vector Y,
v. |update the bandwidth: hy_1 — hy;
vi. It — k
| repeat steps 3(d)i—3(d)iv to obtain Vi, = N® Q,gk);
ji. | compute the capacitance matrix

its inverse C;- U and the matrix Ty =

Cr=In + ——

1
N k— 1)

1 /2

XkSk_ IXk

N(k)

V2

X Vi X

’
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viii. update S,:l:

_ Ny _ 1 _ _ _
1_ 1 1 Ty 1/24—1y, 1/2 1
st = (1 + N(k—1>) [Sk_l e S XV Pe v stk_l]

ix. compute the step-size matrix T = S ' Ty.
x. update the local linear estimator B, = Iy — ToBe-1+ X/;I-Q/(ck) Vi
Xi. LsaveANk, N® |y, Sk_l, Br.
(b) Bk — Br—1ll > €
repeat 4a
end if
end if
end RLL estimator

4.2 Bandwidth selector

The algorithm RLL estimator requires an update of the bandwidth at step 4(a)v. As
is well known in the nonparametric framework, the estimation of the bandwidth is
a crucial issue that notably affects the level of smoothing of the resulting estimator.
Large values of the bandwidth provide an estimator with a large bias and a small
variability, while values that are too small produce an estimator with a small bias and
a large variability. Therefore, one can consider two methods according to algorithms
bandwidth 1 and bandwidth 2 described below.
bandwidth 1
1. At step 3c of RLL estimator, compute hy using the subsample Wy;

2. Atstep 4(a)v of RLL estimator, update the bandwidth using a recursive esti-
mator given by the convex combination

hey=\1— =) h_ -h(Wp),
k ( k)k1+k( k)

where ﬁ(Wk) is the bandwidth selected based on the data available in the
window Wy
end bandwidth 1

bandwidth 2
1. At step 3c of RLL estimator, compute hj using the subsample Wy;
2. At step 4(a)v of RLL estimator, update the bandwidth using an estimator ﬁk
based on the data available in the windows Wy, ..., W.
end bandwidth 2

5 Proofs

In all the proofs of our results, C denotes a constant whose value is unimportant and
may vary from line to line. Additionally, for any i € Nd, t € N, and (x,u,v) €
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R4 x R, set

_ _ 1 fu—x iK u-—Xx 4
o= (5) k(02 e

5.1 Proof of Theorem 3.1

Noting that [u'] < |lu|/'l and applying Bochner’s Lemma with Assumptions (A2) and
(A3)(i), we obtain

. 1 u—x\! u-—x
tlggoE[qs,,i(xtj)] — lln;oh—d/Rd( i ) K( ? )fx(u)du= XX,
(25)
and similarly,

Jim E[#{67(X,) | = fxop 26)
Then, by (12), we have

1o
tim B[00, ] = lim o
’ n

n—o0

1 (Z;)lil NE[ 91X .

and Assumptions (A1) and (A3)(ii) combined with Toeplitz’s and Cesaro’s lemmas
give (14). For the variance term in (16), define

N, Ny
Ars = ' Cov [ 75X, D deiXro) | 27
j=1 =1
then, we have
—2\ | n —2|l|
li ;O .
Var (hn ! n l) (N(n))2 Z (N("))2 ; t,s -— El + E2 (28)
1#£s

Again, E| can be decomposed into variance and covariance terms as

h—Z\ | n

El = oo 22}12"' Var [¢,i(X,))]

t=1 j=1
h—2|l| n 5
+ vy 2 2 Cov [ 91X, 64X
t=1 j#t
= En+ Eqpn.
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Using (25) and (26), we obtain
lim A9 Var [(j),)i(th)] = fx(X)72i-
1—>0o0
Therefore, similar arguments as those used to prove (14) ensure that

1 9 s .
Ej = — 2\1|Kd]/21

nhd XX [14+o0(1)], as n — oo.

(29)

Turning to E17, by Assumption (AS5), we have forany (¢, s) € {1, ..., n}? and (j, €) €

{1,..., N¢:} x {1, ..., N}, the following bound of the covariance term.

1 u —Xx i u —X i u; —Xx
‘COV[tbz.i(xrj),diz,i(xsz)”5h?hg./ﬂw( » )( i ) K( » )K(

X ‘f(x,,-,xs,,)(uly uy) — fX(ul)fX(UZ)‘ dujduy

2
< c(/ |u|ii<(u)du) )
Rrd

Using (30) with s = 7, we obtain

—2li| =
|Enal < € g 2 h Ne(Ne = D).
t=1

Under (A1), similar arguments as in the proof of (14) yield that

n%Euzo(@)zoay

Next, let

 242fil+2d 21 4 li
ch = Lhn I J with o > l—i—%.

We can write

20 2l
EZZW t,s'l‘m z Aps = Eyn+ Ex
O<s—t=<cy S—1>¢
t<s r<s

For ¢ < s, setting k = s — ¢ and using (30), one can write

—2|1| cn n —2li| n

h .
il n 21i|
By = (N(n))Z Zzhk+zht = (N(n))zc’lzhf :

k=1 t=1 t=1
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Regression estimation by local polynomial...

Arguing as in the proof of (14), we may obtain

nhiEy = 0 (hgcn) =o(1) asn — 0. (33)
For E»;, we have
h72|i| n—1 n—k . Nkt N;
Bn < s >, DY S| Cor[oui K. duitkio]|

k=c,+1 t=1 j=1¢=1

Because K has compact support and /4, |, 0, then using (A1) and (A4), the choice of
¢, and (15), we obtain

hd 21i| n—1 n—k e
d 2 2 : —2(d+ )
nhnEzz =C (N(n)/n)z k+p
k=c,+1 p=1

jo @2l % L )—2(a’+1)

= C_(nN(n)/n)2 kZZ: Ek;l z (ﬁ

cnt1 p=1
o8]
= 0 [ p @220 z | = O(h;(2+d+2|1|)c;a) =o(1). (34)
k=cp+1

Finally, the asymptotic variance in (16) follows from (29), (31), (33) and (34).

5.2 Proofs of Theorems 3.2 and 3.3

Before we present the proofs of Theorems 3.2 and 3.3, we state some auxiliary lemmas.
Because some arguments for the proofs are similar to those employed in the proof of
Theorem 3.1, we shall only present the main differences. First, for any i € N4t e N,
1 <j<DNMN,and (x,u,v) € R x R, we set

pv)=v—r@), ¥ =vljysp,) and Usi=¢iXe)) [0Xyj, Vi) — ¥ (Yi))].
(35)

For each i € N, define the truncated version of tn*.i:

i =~ N(") Zzh ¢r.i (Xij) I:Ylj]l{|Yt]|<b )= F(er)], (36)

t=1 j=1

where b, — 0o asn — 0o and ¢ j is defined in (24).
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Lemma 5.1 Let Assumptions (Al)—(A10) hold and i,k € N? such that 0 < [i|, |k| <

2p. If fx is continuous on X, then

. 2 X
d—l\i\—lk\ Olij+ k| —d 0y (X) X (X) Vitk dto] ()
n K

Cov (tni, Ink) = p
n

and
* > * > 1
Cov (tn,i — In i, tn,k — tn,k) =0 T (38)
nhy,

Proof By conditioning on X;;, a simple computation shows that

Cov (Utj,i, Utj,k) = ]E|:¢f,i(xtj)¢t,k(xtj)((p2 (er, Ytj) —2¢ (er, Ytj) 4 (Yl‘j) + Wz (Ytj) ):|

—E[¢uiXipv (v) [E[srxXipw (1) ]
= E| — Ey+ E3 — E4.

On the one hand,
Because a)% and fx are continuous, it follows by applying Bochner’s Lemma with

the help of (A3) and (A9) and the first part of (11) that

Er = /R ik )|E (Y2X = u) =2 | x@du

2

X X)Vi —
=W(1+n), 7 — 0ast — oo.
t

(39)

On the other hand, using again (11), Cauchy—Schwarz and Markov’s inequalities, we

have

|Ey| < [ sup E[¢§k(u)¢ﬁi(u)(y,j _r(u))zyé]ﬂb[|y,j| > bn]]l/z

llu—x]||=coh;
/
< c%h,‘zd[max {E (Y:}) , 2C2]E|Ytj|3, c%]E (Yé) }]P( |Y,j| > bn)]
< Ch7 (nny?/ke= 2.

Similarly, one can prove that |E3| + |E4| < Cht_Zd (In n)2/“e_ 2" it follows that

2
| Cov (U, U | = W 4+ 1)+ Ans, (40)

t
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Abn

2= "2t .

where A, ; = O (C(lnn)h+) and 1, — 0 ast — oo. Next, we write
t

~ _ 1 n . N;
Cov (fnis fn) = Ny > pt {z Cov (Ui Usjx) + . Cov (Uyj i, U,g,k)}
=1

=1 J#

+

N; Ny
1 . t 5
(N2 Do hE TS Cov (Unji, Use)

1S j=1t=1
= F1+ F, + F3.

For F, using (40) and applying Toeplitz’s and Cesaro’s lemmas with the help of
Assumption (A1), we obtain

1 o7 (%) fx () Vi ik
Fi = me,i,ﬂk‘_d% +o(l) asn—o0.  (41)
n

nh

Now, let us study F; and F3. To this end, from (35), using (A2), (A7) and Bochner’s
lemma, we obtain forany (¢, s) € {1, ..., n}2 and (j,¢) € {1, ..., N} x{l,..., Ny},

IE (U},iUse x) ‘ = ‘/RM {/RZ [Ul — ¥y — r(ul)][vz —¥(v2) — r(u2)]

< (v 1 ”2)dv1dv2}

X ¢t,i(u1)¢s,k(“2)f(xtj,xsz)|(y,j’yxz) (uy, up)dujduy

= s [1bal+ o] [1bal + ]
lug —x|[<co
luz—x||=<cohs

x /RM |15 (D by k(w2)]| T (X0 X0) (¥ V) W15 W)U duy < Cby,
(42)

and similarly,

E (03)

= ‘/ ¢ri(w) [v — ¥ (v) —r(w] f(u, v)dudv| < Cb,. (43)
RA+1

We deduce that
| Cov (U, Usew) | = CB2. (44)
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which together with (A1), Toeplitz’s and Cesaro’s lemmas and the choice of b, leads
to

. cpnd n h, [i]+[K]
nhd =K p, < —Zontn 1 (h—) Ni(N; —1)=0 (bﬁhg) = o(1)
(N(”)/n) =1 n
45)
as n — 00. Next, to study the term F3, we use a truncation device. Let
_ 2tlil+Ik|+2d dv +2 + |i| + K|
=|h I ith , 46
Cn Ln J with o > a0 =) 46)
where v is given in (A10), and write
2 Ny Ns
il |k
= G X S o U )
O<s—t=<c, j=1t=1
t<s
) Ny N
il |k
+ ooy D h BT Cov (Uiji, Usex)
s—t>cp j=1t=1
r<s
= F31 + F3. 47

Now, by (44), using (A1) and (A3) with the choice (46), combined with Cesaro’s
and Toeplitz’s lemmas and the definition of b,, we have

' : 1 i
nhd =Kl 5 | < Cp2ppd ik e > ihMN N
( ) O<s—t<cy
t<s

IA

) 1 Cn n .
2 1 d—lil—|k| [i] k|
Chunhy " e D> 2 phy NexpNy
k=1 p=1

—0 (bﬁcnh;j) —o(1),

as n — 0o. About F3p, we go back to the decomposition (47).
Forany r € Nand i € N?, let g; ; be the function defined by

lu—x||<cohs, [v|<by

gri (@, v) = ¢ i(w)(v — r(u))ll{ }(u, v),
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where cq is defined in (11). If u = (uq, ..., ud)T, then using (A2), we have for any
j=1,...,d
0g: i dg, i(u,
‘ Ee (wv)|<C|b,+ sup —(u) and ‘M < C.
ou j ou j dv
{HU*X”SCO}H}
(48)

Therefore, by Taylor’s formula, we obtain

sup
(u,v)7@’,v)

gri(u,v) — g i(u/, v’)) < Cbnhl_(d'H)( Ju—u’ ||1 + hylv — v’|).

Consequently, for sufficiently large ¢, the Lipschitz modulus of continuity of g; ; and
gs.k can be bounded as

L(g)L(gs k) < Cb2h, D p-@+D), (49)

which together with Assumption (A4), the second part of (44), leads to
‘COV (Usjir Ust) ‘ < Ch2p; @D+, (50)

Therefore, Assumptions (A1) and (A3)(i), the condition lim,,_, o n* ZanH € =0
combined with the choice (46) and the definition of b,, ensure that

. Cb2 hd [i]— K]
nhd - | < =207

[i[—=(d+1); |k]—(d+1
= W Z h; h‘s‘ ¢ )Nthftﬂ

s—t>cy
t<s

o0
19) b’%h;(2+d+|1|+lk|) Z €
k=cp+1

-0 (b%h;(2+d+|il+|k\)cn—a) = o(1).

asn — o0o. We deduce that
nhd=H=K g1 = o(1) asn — oo, (51)

which proves (37). Regarding (38), using (11), (A8) and the Cauchy—Schwarz inequal-
ity, we have

E| g0 s Koo ¥ () ¥ (V| = Blw (v) v o <

hdhd hdhd
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and in the same manner,

2—8
E o gy
hind

BiXip¥ () [E|gsacXewr (o) | =

Therefore, Assumption (A1) and Toeplitz and Cesaro’s lemmas indicate that
nhgililf‘kl Cov (tn,i — fn,i, thk — fn,k) = 0<b578nh;d),

and (38) follows from Assumption (A10) and the choice of b;,, which achieves the
proof of Lemma 5.1.

Theorem 3.2 follows now from Lemma 5.1, the Cauchy—Schwarz inequality and the
fact that

) Cov (t:i, t:k) ) < ‘ Cov (t:’i — Inii, ik — f,,,k) ‘ + ) Cov (fn,i, f,,,k) ‘

+ \/Var (t;,i - fn,i) Var (fn,k) + \/Var (t,;"k - fn,k) Var (fn,i).

Next, Theorem 3.3 is a consequence of Lemmas 5.2-5.4 below and the fact that an
arbitrary linear combination of /'t . can be represented as

> cihy'tri = An+ By + Gy
O<lil<p

with

A= D (fi=E ). Bi= X o E (i) and
0 n

lil o<lil<p "

IA
IA
S|

Cj -
C, = h_'(t:’i — tn,i),
O<lijl<p "

—

IA
IA

where t:; ; and f,.i are defined in (21) and (36), respectively, and b,, = (8 In n) /1 for
6, u>0.

Lemma 5.2 Under Assumptions (Al)—(All), we obtain
s D 2
nhd A, 2> N (0, o2 (x)) :
where

oa() =0y X D cickbjitk-aVitk-
0<lil.|k|<p
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Proof Set
N

—1 ..
War = b (N) D7 il > Uy and Zu = War = E (Wa)

0=lil<p j=l1

Then, /nh? A, can be rewritten as
n
nhdAy =" Zu. (52)
=1

Now, let us define the sequences of real numbers (by,),cN, (Pn)neN and (¢,)qeN sSuch
that

b, — o0, bzh;’—>0, pn — 00, ¢y —> 00, pp/n—>0 and ¢,/p, — 0.
(53)

We employ Bernstein’s big-block and small-block procedure. Partition the set
{1,2,---,n} into r, + 1 subsets with large blocks of size p, and small blocks of
size ¢, and set

n
Iy = . 54)
! \J’n + an
Foranym =1,...,r,let Ty, T, , and T,;:m be defined as follows:
km~+pn—1
Tom =D, Zu, with ky:=(m—D(ps+qn) +1, (55)
t=k,
Im+qn—1
Tyw= D Zu. With ly:=0m—D(pa+ta)+patl, (56
1=l
n
Tym= D,  Zu. (57)
t=rp(pntqn)+1
We can write
I'n I'n
nhd Ay =" Tom+ D T+ Ty i=Su1 + Su2 + Su3. (58)
m=1 m=1

To obtain the asymptotic normality of \/nh? A, we have to show that
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E [sn 2] ~0, E [53,3] ~0, (59)

I'n
[ itSy, ]] H E I:eltTn m:| O’ (60)
=Y E(I},) = o4(x), (61)
m=1
and for every ¢ > 0,
1<
S D E (7205, 102 ] = 0 (62)
n

m=1

Relation (59) implies that S, 2 and S, 3 are asymptotically negligible, (60) shows
that the random variables T, ,, in S, are asymptotically independent, and (61) and
(62) are the standard Lindeberg—Feller conditions for the asymptotic normality of S, |
under independence. Let us now prove (59). From (56) and (58), we have

n lm+(1n71
E[s2]=> > W 423 S Cov W W
m=1 t=ly m=1l, <t<s<ly+qn—1

'n Im+qn—1 lm’+qn_1

+2 > DD Cov(War, Way) i= A1+ Ay + Az,

l<m<m/<r t=l, s=l,,

Using (35), we can write

n lm+qn_1 N;
M= (N) TS varl S > U
m=1t=l, 0<li|<p, j=1
Note that, by (44), because (&) is decreasing, using Assumption (A1), we can bound
) hy i+k N N
Var (Wy;) = nh (N(”)) > ek (h—) S Cov (Ui i Urex)
0<lil,|kl<p " j=1t=1
_2 h i+k _2 _
=cnnf (N®) 702 > e (h—t) NE = Cn (N®) ki
0<lil.Ik|<p "
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Therefore,

b2
A <C "chir; = 0(6]_”2) as n — oo, (63)
r pnhnp

and similarly, using the Cauchy—Schwarz inequality, we have

bzr q2 6]2
My =Crm =0 —"5 ) asn— oo (64)

nh,
For the last term of E[Sg »1, we can write
In+qn—1 lm’+qn_l

hd - R\ (s \E
A352(1\7@))2 22 2 ack (i) (E)

1<m<m'<r, t=ly s=l,,, 0<|i|,|k|]<p

N; N;
X ZZ |COV (U,j,i, Usg’k)| .
=1

j=11t=

By the boundedness of the covariance term in (50) and because €; and (h,,) are decreas-
ing, we obtain

n n Imtan—1 1y +an— i k
B SRR h\' (s ) €ctutan
30 Y Y RN (O () T
n n ( t s)

2
N(”) t=1 m=1 i=l, 5=l 0<lil.kl<p
2 rn—1
nannbn —1q ( qn )
_ MO T mtan — o ) a p S (65)
2 ,d+2p+2 2(d+p+1
(N)? pdt2rt2 & At

Therefore, the proof of (59) can be deduced from (63), (64) and (65), and the sequences
pn and g, are chosen such that

Gn qr ar
-0 " >0 and —2—— — 0 asn — oo. (66)
2 2 2(d+p+1
pnhnp pnhnp pnhn( to+h)

Next, consider the contribution of S, 3. Setting M,, = r,(pn, + qn),

n
E(s2:)= D VarWa)+2 > Cov(Wu, Way) i= 01 + Oy,
t=M,+1 M,+1<t<s<n

By (36) and (37) in the second part of Lemma 5.1, we can write

nhg Var [ D7 cihy, ' ZVar(Zn,)—ZVar(Zm)—i— Z Var (Zy,) .

O<lil<p t=M,+1
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nd
Because M, ~ n, Assumption (A11)(i) ensures that ;’, — lasn — oo. It
My

follows that

M,
> Var (Zu) ~ ZVar (Zn) =01(X) [14+0(1)] asn — oo.

t=1 t=1

Therefore, ®1 = o(1) as n — oo. For ®,, using (51), it is easy to see that

N, N
@< > ik Z E>°> Cov (Usjis Usex)

2
0<lil.Ik|<p (N(”) P e
=o0(l) as n— oo.

Consequently, (57) follows. To prove (60), observe that for any m = 1, ..., r,, if we
let
Em = (kalv ) kaNkm 3o ey ka—l-p—ll, ) ka+p—1Nkm+p,1) )
Yo = (Yi1s s Yeuiy s - > Yotp—11s - s Yt p— 1Ny s pt ) -
km+pn_l . . .
and A,, = s Ny, then using (48), it can be shown that there exists a mea-
=Km

surable function G, : R4%m x RAn — R such that

rp—1 n
exp (itTy,,) = G, (E,,,Y,) and exp(it Z Tn,m) = H G (B, Y s
m=1 m=1

where

3Gm
sup _8u )
i

I<i<dAn

k+Pn_l i
|t|b
MOl S > wa(i)

o s=kyn 0=<li|<p

which together with (24) and the decrease of (4,,) indicates that

t|bp nhﬁpn

Therefore,

) -l ) zbznhnpnrneqn
Cov eXp it Z Tn,m , EXp (ltTn,rn) < CW

m=1
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Using (53) and arguing as in Doukhan and Louhichi (2001), we obtain from the last
relation
In
E [Eirzj;;:, T,,,m] _ H E [eizT,,,m]
m=1

Then, the proof of (60) follows by taking ¢/, /7, p, rather than ¢ in the above relation
as soon as

2 —Pqn
1" pnine
= T @ ©7)
n

e Pdn

W_)O as n — oQ. (68)
n

For the proof of (61), using (58), we can write

n
Var(S,,.1) = Var (Z Zn,) — Var(S,.2) — Var(S,.3)

t=1

—2CoV(Sn,1, Sp,2) —2CoV(Sn,2, Sn,3) —2C0V(Sp,1, Sn3)-

Then, Cauchy—Schwarz’s inequality combined with (59) and (37) in Lemma 5.1
ensures that

n
1lim Var(Sy,1) = lim Var (Z zm) =ol(x). (69)
=1
Now, using the arguments employed before for bounding A3, we find that
> CoV(Tum. Tyw) = 0 as n — 0. (70)
m#m'

Then, (61) follows from (69), (70) and the fact that

Var(Su ) =sy+2 . CoV(Tum. Tum).

1<m<m'<r,
For the proof of (62), first note that

p n bﬂ

|Tom| < "=

= hb/nhd’

It follows from Markov’s inequality that

1< 2 Pﬁbrzz
52 F [Tn,m]lm,mlxs,%] =0\~ )
Sn m=1 nhn

Therefore, (62) is satisfied as soon as

lim L1 _ ¢ 1)
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By Assumption (All1)(ii) and taking p, = [n%], g» = |logn] with a >
2v (d + p + 1), we obtain (66), (68) and (71).

Lemma 5.3 Assume that (Al)—~(A3) and (A8) hold. Then,

lim /nhdB, = 0.

n—o0

Proof Note that by (36),

fuii= —— N(n) ZZh 01 (o) [ Vi = rXip) = YLy, 1oy |

t=1 j=1
Then, by conditioning on X;;, we obtain
l

|E.0)] < N(n) SR

t=1 j=I

[¢t i Xl]) Ytl]l{|yt1|>b"}]’

Cauchy—Schwarz and Markov’s inequalities ensure that

|E@.0)| < % anihrd {E [Yj] P[1Yj] > bn]}l/2

=1 j=1

C < & i—d 2 MY | w12
- t - n
oD ID IS 1 b1 AT B

t=1 j=1

IA

Cn )‘a/z(lnn)l/"zhl g

IA

Therefore, using (A3)(ii) with the decrease of the bandwidth #,,, we have

nl_m/z(lnn)l/“ h
JnhiB, < CT S z( t)
n

0<li|<p =1

A

=o0(1) assoonas§ > 2/,

and Lemma 5.3 follows.

Lemma 5.4 Under Assumption (AS8),

nthn — 0 as.
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Proof Observe that for any ¢ > 0,

n
1}»[ nhiC, > s} <P [U{mﬂ > bn}:| < E[ek‘”‘]nl—”,

=1

1
where the last inequality follows by setting b, = (§ Inn) #, with the help of Markov’s
inequality. Therefore, Assumption (A8) ensures that for any & > 0,

(o)
ZP[ nhic, > s] <oo if8>2/x,
n=1
and Lemma 5.4 follows by applying Borel-Cantelli’s Lemma. (]

5.3 Proof of Corollary 3.2

Recall that n, 1 | is the number of derivative elements % a()‘i'kr (x) such that [k| = p+1,
and forany ¢ € {1, ..., n}, define

n
T —
M= (rXn).....r(Xw) . Br =8> aTe" M, (72)

=1

(th - X)[q] - (th — X)[q+"p+l]
(Xt2 — X)[q] - (X,z — X)[q+"p+l]
A=
Xy, — ) (X, — x)ltrl
Then, we can write for sufficiently large ¢,

M, = XiB+ Abpy1(X) + 0 (hf’*‘]l,v,) . with Iy, = (1,..., )T e RM,

Therefore, setting

n
D, => XA,

t=1

we deduce from (72) and Toeplitz’s Lemma that
ﬂ;zk =B+ Srjl |:Dnbp+l (x) +o0p (Hn]lth:—i_l_d)] .
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Next, a simple computation shows that
+1
D, = H, Anh;li7 )

where A, is a g x npy; matrix whose (i, j)-th component is ay [il[;] =
—([i—1 i—1 . . P
p, =1L ])Sg,li—llﬂj—l]’ l<i<gandqg+1<j<gqg-+np4+ Ll Simi-
lar to (18), the matrix A, converges in mean square error to f(x)A. Then, we can

deduce that

B: =B+ S, HyAwbp 1 R +0, (Sn—lthr;:H]lq)

_ _ 1 _ — 1
= B+ H VHy S HyAybpy (0BT 40, (H,, VH, S Hhlt 1q)

=B+ H, ' [B7 Aby n! ™ + o, (hE11,)]. (73)
Because
Sy T = Bu — By
by (73), we have
H, Sy T = Hy (o= B) = [ B Abpronf ™ 40, (n0711,)]. 9)

Now, by Slutsky’s Theorem and (18), we obtain

2
%fX(X)B—lVB‘l : (75)

nhd H, 7' 25 A (0,
Therefore, Corollary 3.2 follows from expressions (74) and (75).
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