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Abstract In this paper we study a local polynomial estimator of the regression func-
tion and its derivatives. We propose a sequential technique based on a multivariate
counterpart of the stochastic approximation method for successive experiments for
the local polynomial estimation problem. We present our results in a more general
context by considering the weakly dependent sequence of stream data, for which we
provide an asymptotic bias-variance decomposition of the considered estimator. Addi-
tionally, we study the asymptotic normality of the estimator andwe provide algorithms
for the practical use of the method in data streams framework.
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Weakly dependent sequences · Kernel methods
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1 Introduction

Streaming data, or data streams, aremassive data arriving in streams, and if they are not
immediately processed or stored, then they are lost forever. Large organizations, such
as financial companies in financial markets, generate hundreds of millions of records
of transactions in a short time, and many scientific studies also generate gigabytes of
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data in minutes. In many real situations, such as scientific and real applications, large
amounts of raw data can be collected extremely easily such that experiments typically
yield a considerable number of data points. Data streams naturally arise inmany fields,
such as oceanography, climatology, Internet and web traffic, finance, and security. For
example, with the advances in modern technology, one can imagine a sensor sending
back to a base station a reading of the ocean surface temperature every second or less.
The data produced by this sensor are a stream of real numbers. As another example,
consider a sensor that reports the surface height of the ocean rather than temperature.
The surface height of the ocean varies quite rapidly compared with temperature, and
thus, the sensor might return a reading every tenth of a second. Moreover, to learn
something about ocean behavior, wemight want to deploymany sensors, each sending
back to the central node a stream at a rate of ten per second. In these situations, the
data arrive so rapidly that it is impossible for the user to store all the data on a disk (as a
traditional database) and then interact with them later. Consequently, to address such
large data, the traditional nonparametric techniques require a considerable amount
of time to be computed and thus become useless in practice if real-time forecasts
are expected. Therefore, the development of processing methods and analyzing these
data streams effectively and efficiently have become challenging problems in statistics
and computational science. A substantial amount of literature has been dedicated to
providing specific methods for these particular data. We refer the readers to Aggarwal
(2007) and Domingos and Hulten (2003) for a detailed overview. Recent advances on
this topic were the focus of the papers of Zhou et al. (2003), Cao et al. (2012), and Xu
et al. (2014), which provided kernel density estimation methods over data streams.
In this paper, we are interested in the regression model, and we investigate how to
provide simultaneously an estimation of a nonparametric regression function and its
derivatives from a locally weighted least squares fit over the data streams. The regres-
sion model that we consider is a statistical relation that describes the link between
two random variables: a response variable Y ∈ R and a regressor X ∈ Rd (d ≥ 1),
that is, Y = r(X)+ ε, where ε is an error random variable. Regression estimation is
defined as the construction of an estimate of the regression function r from observed
sample data of (X, Y ). The statistics community has devoted many efforts to pro-
viding an estimation of the regression function and its derivative using parametric,
semi-parametric and nonparametric approaches for univariate and multivariate data.
Parametric regression estimation is conducted under the assumption that the regres-
sion function admits a known parametric form, such as a polynomial, whereas in
nonparametric estimation, no such assumptions are required. Because the statistical
link between two random data streams is completely unknown in most applications,
nonparametric regression estimation has found a considerable number of applications
in many domains. Local polynomial kernel estimation is a classical nonparametric
technique for studying the regression model, and it has recently attracted considerable
attention among statisticians and econometricians. We refer the readers to the mono-
graph of Fan and Gijbels (1996) for an overview on both the theoretical and practical
aspects of the local polynomial method. The principal advantage of this method is its
ability to provide simultaneously an estimation of a nonparametric regression func-
tion and its derivatives. Moreover, the local polynomial method has better estimation
accuracy at the boundary region of the data support and minimax efficiency over
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the local constant estimator (Fan and Gijbels 1996). Some significant references on
the subject are Fan and Gijbels (1992, 1995), Ruppert and Wand (1994), and Ruppert
et al. (1995). The local polynomial estimator for a univariate nonparametric regression
model was studied by Fan et al. (1996), who derived a bias-variance representation. In
the multivariate case, Masry (1996a, b) derived the rate of convergence and the asymp-
totic normal distribution of the local polynomial regression estimator for time series
data. Gu et al. (2015) extended the result of Masry (1996b) to obtain explicit leading
bias terms for the entire vector of the local polynomial estimator. Hansen (2008) pro-
vided uniform consistency results for kernel estimators of density with applications
to Nadaraya–Watson and local polynomial regression estimators under strong mixing
conditions. Recently, Liang and Baek (2016) proposed a Nadaraya–Watson type and
local linear estimators of conditional density function and established their asymptotic
normality with the left-truncated and α-mixing data. Robust estimation of multivariate
regression model using kernel weighted local linear regression was investigated by Li
and Zheng (2009). As indicated above, in the data stream framework, many observed
data points can be available in a very short period of time. Consequently, the computa-
tional time of a standard local polynomial estimator can quickly become large in such
situations, and thus, a real-time regression estimation is increasingly more difficult to
obtain as the time increases. This situation arises from the fact that such a standard
local polynomial estimator has to be completely recomputed when a new observation
comes into the picture. This is why we consider in this paper the local polynomial
estimation problem in the context of data streams. We propose a sequential technique
based on a multivariate counterpart of the stochastic approximation method for suc-
cessive experiments proposed in Robbins and Monro (1951) for the local polynomial
estimation problem. Our estimator is a recursive version of the traditional estimator
based on the locally weighted fitting adapted to the multivariate data stream model.
Its construction is based on the concepts developed in different contexts by Vilar and
Vilar (1998, 2000) for locally weighted smoothers and by Amiri (2012), Amiri et al.
(2014), and Huang et al. (2014) for kernel smoothers.

2 Locally weighted regression for data streams

2.1 Presentation of the model

Let W1, . . . ,Wn represent a sequence of observed arrays of the form

Wt :=
{
(Xt1, Yt1) , . . . ,

(
Xt Nt , YtNt

)}
, t = 1, . . . , n,

where the sub-sample (Xt1, Yt1), . . . , (Xt Nt , YtNt ) is a sequence of bivariate random
variables identically distributed as a stationary stochastic process (X, Y ) in Rd ×
R (d ≥ 1). We assume that the (Xt j , Yt j )’s have a common joint density f(X,Y )(·, ·).
In the data stream framework considered here, Wt is called a window and Nt is its
width, which is obviously supposed to be an integer. If n windows are considered,
then the sample size is N (n) := ∑n

t=1 Nt . Additionally, when the windowsWt ’s have
widths Nt = 1 for all t = 1, . . . , n, the sample size is equal to the number of windows
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n and the windowsW1, . . . ,Wn play the role of the observations. The main objective
of this paper is to provide an estimator of the regression function r(x) = E (Y |X = x)
and its derivatives that can be easily updated when a new set of observations Wt is
availablewhile retaining nice theoretical propertieswith respect to natural competitors.

2.2 Multivariate regression estimation

Given x ∈ Rd and p ∈ N, if we assume that the regression function has derivatives of
total order p+1 at x, then the multivariate Taylor formula provides an approximation
of r(X) by a multivariate polynomial of total order p as:

r(X) = r(x)+
∑

{k∈Nd : 1≤|k|≤p}

1
k!

∂ |k|r
∂xk

(x) (X − x)k+
∑

|k|=p

εk(X−x) (X − x)k (1)

and lim
X→x

εk(X − x) = 0, where, throughout the paper, for any d-tuples k =
(k1, . . . , kd) ∈ Nd and x = (x1, . . . , xd) ∈ Rd , we note that

|k| =
d∑

i=1

ki ; k! =
d∏

i=1

ki ! and xk =
d∏

i=1

xkii .

Taking into account the observations available in W1, . . . ,Wn , we can derive the
locally weighted least squares estimators of the quantities

βk = 1
k!

∂ |k|r
∂xk

(x), 0 ≤ |k| ≤ p

by minimizing the objective function

WSS(β) =
n∑

t=1

Nt∑

j=1

⎧
⎨

⎩Yt j −
∑

{k∈Nd : 0≤|k|≤p}
βk

(
Xt j − x

)k
⎫
⎬

⎭

2

ω
(n)
t j (x), (2)

where the weights ω
(n)
t j are defined by

ω
(n)
t j (x) = 1

N (n)hdt
K
(
Xt j − x

ht

)
, (3)

where K is a kernel function, ht is a bandwidth parameter, and β =
(
βk, 0 ≤ |k|

≤ p
)T. For u = 0, . . . , p, let

Lu =
{
k ∈ Nd , |k| = u

}
and q =

p∑

u=0

(
u + d − 1
d − 1

)
.
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Define L as the set of q d-tuples obtained by rearranging the elements of the sets
L0, . . . , L p with respect to the lexicographic order and concatenating them as a tri-
angular array. Let g represent a continuous bijective function such that:

g : L −→ {0, . . . , q − 1}
k '−→ i

, (4)

where i denotes the index of the d-tuples k in the set L . For example, for simplicity,
consider the basic bivariate case (d = 2). Then, we have

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0),
(0, 1), (1, 0),
(0, 2), (1, 1), (2, 0),
(0, 3), (1, 2), (2, 1), (3, 0),
...

(0, p), (1, p − 1), (2, p − 2), (3, p − 3), . . . , (p, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

and the function g can be defined as

g (k1, k2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(0, 0) = 0,
g (k1 − 1, 0)+ k1 + 1 if k2 = 0 and k1 ≥ 1,
g (0, k2 − 1)+ k2 if k1 = 0 and k2 ≥ 1,
g (k1 − 1, k2 − 1)+ 2 (k1 + k2) else.

Because in (4), g is a bijective function, g−1 exists, and we note that g−1(i) = [i] for
any i = 0, . . . , q − 1.

According to the above notation, for any t ∈ {1, . . . , n}, one can define thematrices

β =

⎛

⎜⎝
β[0]
...

β[q−1]

⎞

⎟⎠ and X t =

⎛

⎜⎜⎜⎝

1 (Xt1 − x)[1] . . . (Xt1 − x)[q−1]

1 (Xt2 − x)[1] . . . (Xt2 − x)[q−1]
...

1
(
Xt Nt − x

)[1]
. . .

(
Xt Nt − x

)[q−1]

⎞

⎟⎟⎟⎠
:=

⎛

⎜⎜⎜⎜⎝

X T
t1

X T
t2

...

X T
t Nt

⎞

⎟⎟⎟⎟⎠
.

Finally, set

Yt =
(
Yt1, . . . ,YtNt

)T
and &

(n)
t = diag

(
ω
(n)
t1 , . . . ,ω

(n)
t Nt

)
, t = 1, . . . , n.

Then, the derivative of (2) with respect to β is simply the empirical counterpart of

2
n∑

t=1

NtE
(
ω
(n)
t1 Xt1X T

t1β − m (Yt1)ω
(n)
t1 Xt1

)
=: 2F (β) .
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By solving the equation F (β) = 0, we obtain the locally weighted estimator of
β, based on W1, . . . ,Wn , and then, we can deduce the estimator of the regression
function and its derivative as

̂∂ |k|r
∂xk

(x, n) = k!β̂(n)
[g(k)], for 0 ≤ |k| ≤ p,

where β̂
(n)
[g(k)] denotes the k-th component of β̂n . It follows that the problem of esti-

mating the regression and its derivative can be viewed as a particular case of the more
general issue addressed by stochastic approximation methods because β is readily
the unique root of the function F . Therefore, β can be estimated recursively using
the multivariate Newton–Raphson procedure (see Ruppert 1985), as follows. Let
β̂n = (β̂

(n)
[0] , · · · , β̂

(n)
[q−1])

T be an estimator of β based on W1, . . . ,Wn . Using the

fact that
∂F
∂β

(β) =
∑n

t=1
NtE(ω(n)

t1 Xt1X T
t1), the multivariate recursive procedure to

estimate β is defined as

β̂n = β̂n−1 − Dn F̂n
(
β̂n−1

)
, (5)

where Dn is an estimate of thematrix [ ∂F
∂β (β)]−1 based onW1, . . . ,Wn and F̂n (·) is an

estimator of F (·) based on the sub-sampleWn only, that is, the observations received
at time n. Easy computations show that the empirical counterparts of [ ∂F

∂β (β)]−1 and
F (β) are respectively defined by

Dn =
(

n∑

t=1

X T
t &

(n)
t Xt

)−1

and

F̂n
(
β̂n−1

)
= X T

n &(n)
n Xn

[
β̂n−1 −

(
X T
n &(n)

n Xn

)−1
X T
n &(n)

n Yn

]
,

which together with (5) indicate that

β̂n = (Iq − 'n)β̂n−1 + 'nβ̃n, (6)

where

'n =
(

n∑

t=1

X T
t &

(n)
t Xt

)−1

X T
n &(n)

n Xn, β̃n =
(
X T
n &(n)

n Xn

)−1
X T
n &(n)

n Yn

and Iq is the unit matrix of size q.
The vector β̃n is simply the weighted least squares estimator of β based on

sub-sampleWn := {(Xn1, Yn1), . . . , (XnNn , YnNn )}. The expression (6) bears a resem-
blance in its structure to the exponential smoothing scheme, except for the fact that in
(6), the smoothing parameter is a matrix. Additionally, this relation can be understood
as a multivariate Robbins–Monro recursivity (see Robbins and Monro 1951), with a
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step size in a matrix form. Note that easy computations show that the estimator β̂n
appearing in (6) has the form

β̂n =
(

n∑

t=1

X T
t &

(n)
t Xt

)−1 n∑

t=1

X T
t &

(n)
t Yt =: S−1

n Tn . (7)

Finally, Eq. (6) indicates how to update the recursive estimator from its immediate
past when a new stream Wn+1 is recorded. However, the usefulness of (6) presents
some drawbacks because it is necessary to recalculate the inverse of the matrix Sn,
appearing in the expression of 'n . To overcome this issue, by setting Vt = N (n)&

(n)
t ,

Sn can be reformulated as Sn = 1
N (n)

n∑

t=1

X T
t VtXt . Using the relation

Sn+1 =
[
1 − Nn+1

N (n+1)

]
Sn +

1
N (n+1)X

T
n+1Vn+1Xn+1

and the Woodbury formula (see Woodbury 1950), we found that

S−1
n+1 =

(
1+ Nn+1

N (n)

)[
S−1
n − 1

N (n) S
−1
n X T

n+1V
1/2
n+1C

−1V 1/2
n+1Xn+1S−1

n

]
,

where

C = INn+1 +
1

N (n) V
1/2
n+1Xn+1S−1

n X T
n+1V

1/2
n+1

is the so-called capacitance matrix. Finally, note that when p = 0, the solution esti-
mator obtained in the optimization problem in (2) coincides with the recursive version
of the Nadaraya–Watson kernel estimator defined by

β̂0(x, n) =
∑n

t=1
∑Nt

j=1
Yt
hdt
K
(
Xt j−x
ht

)

∑n
t=1

∑Nt
j=1

1
hdt
K
(
Xt j−x
ht

) . (8)

3 Asymptotics with respect to the number of streams

For our asymptotic analysis, we will present our results in a more general context
by considering the weakly dependent sequence of stream data {Wt , t ∈ N}. The
weak dependence ismorewidely applicable thanmany existing dependencemeasures,
such as mixing, because it covers a large class of processes. For instance, mixing is
considered to be useful for characterizing the dependence between time series data
because it is fulfilled for many classes of processes and because it allows deriving
the same asymptotic results as in the independent case. However, some classes of
processes that are of interest in statistics, such as certain AR(1)-process, are not
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mixing but fulfill weak dependence conditions (see Nze et al. 2002; Doukhan and
Neumann 2008). For an extensive introduction and further information on tools for
attacking weakly dependent processes, we refer the readers to Rio (2000); Dedecker
et al. (2007). Given a function ( : N2 ×R2

+ → R+, we extend the notion of (-weak
dependence into the streaming context. First, let us consider for any integers u, v and
k the set

'(u, v, k) =

⎧
⎨

⎩
(s, t, j,k) ∈ Nu × Nv ×

u∏
p=1

{
1, . . . , Nsp

}
×

v∏
q=1

{
1, . . . , Ntq

}
,

such that s1 < · · · < su ≤ su + k ≤ t1 < · · · < tv

⎫
⎬

⎭ .

Streamdata {Wt , t ∈ N} are said to be(-weakly dependent if there exists a decreasing
sequence (ϵk)k∈N tending to 0 as k → ∞ for which

∣∣∣∣Cov
[
g0

(
Ws1 j1, . . . ,Wsu ju

)
, g1

(
Wt1k1 , . . . ,Wtvkv

) ]∣∣∣∣ ≤ (
(
u, v,L(g0),L(g1)

)
ϵk,

(9)
for any (s1, . . . , su, t1, . . . , tv, j1, . . . , ju, k1, . . . , kv) ∈ '(u, v, k), and arbitrary
measurable functions gi : Ru(1−i)+vi → R, i ∈ {0, 1}. In (9), L(gi ) denotes the
Lipschitz modulus of continuity of gi , that is,

L(gi ) := sup
x ̸=y

|gi (x) − gi (y)|
∥x − y∥1

< ∞ (10)

and Wt j =
(
Xt j , Yt j

)
, j = 1, . . . , Nt , t = 1, . . . , n. In the following, we will denote

by fX the marginal density of X and σ 2
Y (x) = E([Y − r(x)]2|X = x) the conditional

variance of Y given X = x.

3.1 Assumptions and main results

We will assume that the following assumptions hold.

(A1) Nn is a positive sequence such that Nn → κ for some (common) constant κ ≥ 1
as n → ∞.

(A2) The kernel function K is bounded and continuously differentiable, with compact
support.

(A3) The bandwidth sequence (hn) is positive such that
(i) hn ↓ 0 and nhdn → ∞ as n → ∞.

(ii) For any j ≤ 4p, 1
n

∑n
t=1

(
ht
hn

) j
→ θ j < ∞ as n → ∞.

(A4) The stream {Wt , t ∈ N} is (-weakly dependent, with ( (u, v, w, x) = uvwx .
(A5) For each (t, s) ∈ {1, . . . , n}2 and ( j, ℓ) ∈ {1, . . . , Nt } × {1, . . . , Ns}, the joint

probability density function (p.d.f) f(Xt j ,Xsℓ) of (Xt j ,Xsℓ) exists and satisfies

sup
(t, j) ̸=(s,ℓ)

∣∣∣ f(Xt j ,Xsℓ)(x1, x2) − fX(x1) fX(x2)
∣∣∣ ≤ C for some C>0 and for all x1, x2∈ Rd .
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Assumption (A1) is trivially satisfied in the traditional case Nt = 1 for all t = 1, . . . , n
such that the framework considered in this paper remains more general. Moreover, if
Assumption (A1) holds, then the sequence γ1, . . . , γt defined by γt := Nt∑t

s=1 Ns
is

such that limn→∞
∑n

t=1 γ 2
t < ∞ and limn→∞

∑n
t=1 γt = ∞. The above condition

is a traditional one in the stochastic approximation framework.
Assumptions (A2) and (A3)(i) are usual assumptions for kernel estimation, whereas

(A3)(ii) is a technical assumption that arises from the fact that we need to asymptoti-
cally control the update of the bandwidth. Moreover, if Assumption (A2) holds, then
for any continuous function ϑ , there exist c0, c1, c2 ∈ R such that for any i ∈ Nd and
j ∈ R

sup
∥u−x∥≤c0ht

∣∣∣uiK j (u)
∣∣∣ = c1 and sup

∥u−x∥≤c0ht
|ϑ(u)| = c2. (11)

Now, before stating the main theoretical results of this paper, let us define

sτ
n,i :=

1
N (n)

n∑

t=1

Nt∑

j=1

(
Xt j − x

)i 1

hdt
K
(
Xt j − x

ht

)
Y τ
t j , i ∈ Nd , τ ∈ {0, 1}. (12)

Then, the matrices Sn and Tn defined in (7) can be rewritten as

Sn =

⎡

⎢⎢⎢⎢⎣

s0n,[0]+[0] s0n,[0]+[1] . . . s0n,[0]+[q−1]
s0n,[1]+[0] s0n,[1]+[1] . . . s0n,[1]+[q−1]
...

...
...

s0n,[q−1]+[0] s
0
n,[q−1]+[1] . . . s

0
n,[q−1]+[q−1]

⎤

⎥⎥⎥⎥⎦
and Tn =

⎡

⎢⎢⎢⎣

s1n,[0]
s1n,[1]
...

s1n,[q−1]

⎤

⎥⎥⎥⎦
.

(13)
In the following result, we provide an asymptotic bias–variance decomposition of (7).

Theorem 3.1 Assume that Assumptions (A1)–(A3) hold. Then,

(a) for every continuity point x of fX and for each i ∈ Nd with 0 ≤ |i| ≤ 2p,

lim
n→∞ h−|i|

n E
[
s0n,i

]
= θ|i|µi fX(x), (14)

where µi =
∫

Rd
uiK (u)du.

(b) Moreover, if (A4) and (A5) are satisfied and

lim
n→∞ nα

∑

k≥n+1

ϵk = 0 for some α > 3+ 4|i|, (15)

then

lim
n→∞ nhd−2|i|

n Var
(
s0n,i

)
= θ2|i|−dγ2i

κ
fX(x), (16)
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where γi =
∫

Rd
uiK 2(u)du.

If we set

Hn = diag
(
1, hn, h2n, . . . , h

q−1
n

)
,

B and V represent q × q matrices defined by the entries:

bi j = θ2[i−1]+[ j−1]µ
2
[i−1]+[ j−1] and

vi j = θ2[i−1]+2[ j−1]−dγ2[i−1]+2[ j−1], 1 ≤ i, j ≤ q;

then, Theorem 3.1 can be expressed in the following matrix form.

Corollary 3.1 Under the assumptions of Theorem 3.1, we obtain

MSE(Sn) = Hn

[
fX(x)2B + 1

nhdn

fX(x)
κ

V
]
Hn + op

(
Iq
)
, as → ∞. (17)

Note that in (17), the notation MSE(Sn) refers to a q × q matrix where the (i, j)-th
component is the mean square error of s0n,[i−1]+[ j−1], 1 ≤ i, j ≤ q (recall that for any
i = 0, . . . , q − 1, [i] corresponds to the i-th d-tuples in the set L). In other words,

H−1
n SnH−1

n
m.s.−→ B fX(x), (18)

where the notation
m.s.−→ is the convergence in the mean-square sense. Next, to provide

the asymptotic properties of Tn , the following additional assumptions and notations
are required.

(A7) Given
(
Yt j , Ysℓ

)
, (t, s)∈

{
1, . . . , n

}2
and ( j, ℓ)∈

{
1, . . . , Nt

}
×
{
1, . . . , Ns

}
,

the conditional p.d.f. of
(
Xt j ,Xsℓ

)
exists and satisfies

f(Xt j ,Xsℓ)|(Yt j ,Ysℓ)(u1,u2|v1, v2) ≤ C < ∞ for any (u1,u2) ∈ Rd × Rd .

Moreover, the conditional p.d.f. of X given Y exists and satisfies fX|Y (u) ≤
C < ∞.

(A8) Either
E
(
|Y |δ

)
< ∞ for some δ > 2 (19)

or there exist λ, µ > 0 such that

E[exp
(
λ|Y |µ

)
] < ∞. (20)

(A9) The conditional variance σ 2
Y is continuous and bounded away form zero at x.

(A10) There exists γ > 2
δ−2 such that nγ hdν

n → 0 as n → ∞ for some 0 < ν < 1.
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Assumptions (A7) and (A8) are technical conditions that are imposed to obtain the
proofs of our results. Let us consider the centered version of Tn defined by

T ∗
n =

(
t∗n,[0], . . . , t

∗
n,[q−1]

)T
, (21)

where

t∗n,i :=
1

N (n)

n∑

t=1

Nt∑

j=1

(
Xt j − x

)i 1

hdt
K
(
Xt j − x

ht

)[
Yt j − r(Xt j )

]
for 0 ≤ |i| ≤ p.

In the following results, we establish the asymptotic expression of the variance–
covariance matrix of T ∗

n and its asymptotic normality.

Theorem 3.2 Assume that (A1)–(A10) hold. If we denote by Cov(T ∗
n ) the variance–

covariance matrix of T ∗
n , then

Cov(T ∗
n ) =

1
nhdn

σ 2
Y (x) fX(x)

κ
HnṼ Hn + op(Iq), as → ∞, (22)

where Hn is the diagonal matrix defined in Corollary 3.1 and Ṽ is the q × q matrix
defined by its (i, j)-th component

ṽi j = θ[i−1]+[ j−1]−dγ[i−1]+[ j−1], i, j = 1, . . . , q.

To obtain the asymptotic normality of the estimator, we will assume that the fol-
lowing additional conditions hold:

(A11) The bandwidth sequence (hn) is such that

(i) for any sequence of integer numbers (un) and (vn) with un ∼ vn ⇒ hun ∼
hvn .

(ii) there exists 0 < ν < 2/ (5d + 12p + 8) such that nνhn → c > 0 as n → ∞.

Theorem 3.3 Assume that (A1)–(A11) hold. In addition, suppose that the process
{Wt , t ∈ N} is (-weakly dependent with

ϵk = O
(
e−ρk

)
for some ρ > 4 (d + p + 1) / (5d + 12p + 8) .

Then,
√
nhdn H

−1
n T ∗

n
D→ N

(

0q ,
σ 2
Y (x) fX(x)

κ
Ṽ

)

, (23)

where Ṽ is given in Theorem 3.2 and 0q is the q-dimensional null vector.
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Let us now study the joint asymptotic normality of the estimator β̂n . Because
r is p + 1 times differentiable, expanding r(Xt j ) in a Taylor series around x for
∥Xt j − x∥ ≤ ht indicates that for any t = 1, . . . , n and j = 1, . . . , Nt ,

r(Xt j ) =
∑

{k∈Nd : 0≤|k|≤p}

1
k!

∂ |k|r
∂xk

(x)
(
Xt j − x

)k

+
∑

{k∈Nd : |k|=p+1}

1
k!

∂ |k|r
∂xk

(x)
(
Xt j − x

)k + o(h p+1
t ).

Arrange the n p+1 :=
(
p + d
d − 1

)
elements of the derivatives 1

k!
∂ |k|r
∂xk (x) such that |k| =

p+ 1 using the lexicographic order introduced in Sect. 2.2, refer to them as a column
vector bp+1(x) and define the matrix A whose (i, j)-th component is

ai j = θ[i−1]+[ j−1]µ[i−1]+[ j−1] with 1 ≤ i ≤ q and q + 1 ≤ j ≤ q + n p+1 + 1.

Then, in the following corollary, we obtain the asymptotic normality of our estimator.

Corollary 3.2 Under the assumptions of Theorem 3.3 and hn = O
(
n−1/(d+2p+2)),

we have

√
nhdn

[
Hn

(
β̂n − β

)
− h p+1

n B−1Abp+1(x)
] D−→ N

(

0q ,
σ 2
Y (x)

κX(x)
B−1Ṽ B−1

)

.

In particular, we can deduce from Corollary 3.2 the estimators of individual partial
derivatives of the regression function r(x) via the components of the vector β̂n .

Corollary 3.3 Under the assumptions of Theorem 3.3 and hn = O
(
n−1/(d+2p+2)),

for any i ∈ {0, · · · , q − 1} such that g−1(i) = [i], we have
√
nhd+2i

n

[
Hn

(
β̂
(n)
[i] − β[i]

)
− h p+1−i

n

(
B−1Abp+1(x)

)

i

]

D−→ N
(

0,
σ 2
Y (x)

κ fX(x)

(
B−1Ṽ B−1

)

i,i

)

,

where
(
B−1Ṽ B−1)

i,i is the (i, i)-th diagonal element of the matrix B−1Ṽ B−1 and(
B−1Abp+1(x)

)
i is the i th element of the vector B−1Abp+1(x).

4 Applications

4.1 An algorithm for numerical computations

In this section, we present an algorithm for numerically computing the value of the
local polynomial kernel regression.
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RLL estimator
1. Fix an integer n0 ≥ 1 (resp. n > n0) as the starting (resp. the ending) time

of the estimation procedure;
2. Choose a tolerance level ϵ > 0 and a kernel K ;
3. Initialization: k −→ n0

(a) observe the windows W1, . . . ,Wk;
(b) compute N (k), the total number of observations available at the time k.
(c) compute the bandwidth hk;
(d) for t = 1, . . . , k:

i. compute the sample size Nt of the sub-sample Wt ;
ii. extract the design matrix Xt and the response vector Yt ;
iii. for j = 1, . . . Nt :

compute the weights ω
(k)
t j (x)

end for

iv. define the diagonal matrix of weights &
(k)
t = diag

(
ω
(k)
t1 (x), . . . ,

ω
(k)
t Nt

(x)
)
;

end for;
(e) concatenate the matrices of weights in a quasi-diagonal matrix &

†
k =

diag
(
&

(k)
1 , . . . ,&

(k)
k

)
;

(f) define the initial design matrix and response vector:

X †
k =

⎛

⎜⎝
X1
...

Xk

⎞

⎟⎠ and Y†
k =

⎛

⎜⎝
Y1
...

Yk

⎞

⎟⎠ ;

(g) compute thematrices Tk = X †
k
T
&

†
kY

†
k , Sk = X †

k
T
&

†
kX

†
k and S−1

k ;
(h) compute the recursive estimator as β̂k = S−1

k Tk
(i) save Nk, hk, S−1

k , β̂k .
4. if k + 1 < n:

(a) k −→ k + 1
i. observe Wk
ii. compute the sample size Nk of the sub-sample Wk;
iii. update the total number of observations: N (k) = N (k−1) + Nk.
iv. extract the current design matrix Xk and the response vector Yk;
v. update the bandwidth: hk−1 −→ hk;
vi. t −→ k

repeat steps 3(d)i–3(d)iv to obtain Vk = N (k)&
(k)
k ;

vii. compute the capacitance matrix

Ck = INk +
1

N (k−1) V
1/2
k Xk S

−1
k−1X

T
k V

1/2
k ,

its inverse C−1
k and the matrix Tk = 1

N (k)X T
k VkXk .

123

Author's personal copy



A. Amiri, B. Thiam

viii. update S−1
k :

S−1
k =

(
1+ Nk

N (k−1)

)[
S−1
k−1 − 1

N (k−1) S
−1
k−1X

T
k Vk

1/2C−1
k Vk1/2Xk S

−1
k−1

]
,

ix. compute the step-size matrix 'k = S−1
k Tk .

x. update the local linear estimator β̂k = (Iq − 'k)β̂k−1 +X T
k &

(k)
k Yk

xi. save Nk, N (k), hk, S−1
k , β̂k .

(b) if ∥β̂k − β̂k−1∥ > ϵ

repeat 4a
end if

end if
end RLL estimator

4.2 Bandwidth selector

The algorithm RLL estimator requires an update of the bandwidth at step 4(a)v. As
is well known in the nonparametric framework, the estimation of the bandwidth is
a crucial issue that notably affects the level of smoothing of the resulting estimator.
Large values of the bandwidth provide an estimator with a large bias and a small
variability, while values that are too small produce an estimator with a small bias and
a large variability. Therefore, one can consider two methods according to algorithms
bandwidth 1 and bandwidth 2 described below.

bandwidth 1
1. At step 3c of RLL estimator, compute hk using the subsample Wk ;
2. At step 4(a)v of RLL estimator, update the bandwidth using a recursive esti-

mator given by the convex combination

ĥk =
(
1 − 1

k

)
ĥk−1 +

1
k
h̃(Wk),

where h̃(Wk) is the bandwidth selected based on the data available in the
window Wk

end bandwidth 1

bandwidth 2
1. At step 3c of RLL estimator, compute hk using the subsample Wk ;
2. At step 4(a)v of RLL estimator, update the bandwidth using an estimator ĥk

based on the data available in the windows W1, . . . ,Wk .
end bandwidth 2

5 Proofs

In all the proofs of our results, C denotes a constant whose value is unimportant and
may vary from line to line. Additionally, for any i ∈ Nd , t ∈ N, and (x,u, v) ∈
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R2d × R, set

φt,i(u) =
1

hdt

(
u − x
ht

)i

K
(
u − x
ht

)
. (24)

5.1 Proof of Theorem 3.1

Noting that |ui| ≤ ∥u∥|i| and applying Bochner’s Lemma with Assumptions (A2) and
(A3)(i), we obtain

lim
t→∞E

[
φt,i(Xt j )

]
= lim

t→∞
1

hdt

∫

Rd

(
u − x
ht

)i

K
(
u − x
ht

)
fX(u)du = fX(x)µi,

(25)
and similarly,

lim
t→∞E

[
hdt φ

2
t,i(Xt j )

]
= fX(x)γ2i. (26)

Then, by (12), we have

lim
n→∞E

[
h−|i|
n s0n,i

]
= lim

n→∞
1(

N (n)/n
) 1
n

n∑

t=1

(
ht
hn

)|i|
NtE

[
φt,i(Xt j )

]
,

and Assumptions (A1) and (A3)(ii) combined with Toeplitz’s and Cesaro’s lemmas
give (14). For the variance term in (16), define

At,s = h|i|t h
|i|
s Cov

⎛

⎝
Nt∑

j=1

φt,i(Xt j ),

Ns∑

ℓ=1

φs,i(Xtℓ)

⎞

⎠ ; (27)

then, we have

Var
(
h−|i|
n s0n,i

)
= h−2|i|

n

(N (n))2

n∑

t=1

At,t +
h−2|i|
n

(N (n))2

∑

t ̸=s

At,s := E1 + E2. (28)

Again, E1 can be decomposed into variance and covariance terms as

E1 = h−2|i|
n

(N (n))2

n∑

t=1

Nt∑

j=1

h2|i|t Var
[
φt,i(Xt j )

]

+ h−2|i|
n

(N (n))2

n∑

t=1

∑

j ̸=ℓ

h2|i|t Cov
[
φt,i(Xt j ),φt,i(Xtℓ)

]

:= E11 + E12.
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Using (25) and (26), we obtain

lim
t→∞ hdt Var

[
φt,i(Xt j )

]
= fX(x)γ2i.

Therefore, similar arguments as those used to prove (14) ensure that

E11 =
1

nhdn

θ2|i|−dγ2i

κ
fX(x) [1+ o(1)] , as n → ∞. (29)

Turning to E12, byAssumption (A5), we have for any (t, s) ∈ {1, . . . , n}2 and ( j, ℓ) ∈
{1, . . . , Nt } × {1, . . . , Ns}, the following bound of the covariance term.

∣∣∣Cov
[
φt,i(Xt j ),φt,i(Xsℓ)

]∣∣∣ ≤ 1

hdt hds

∫

R2d

∣∣∣∣∣

(
u1 − x
ht

)i (u2 − x
hs

)i
∣∣∣∣∣ K

(
u1 − x
ht

)
K
(
u2 − x
hs

)

×
∣∣∣ f(Xt j ,Xsℓ)(u1,u2) − fX(u1) fX(u2)

∣∣∣ du1du2

≤ C
(∫

Rd
|u|iK (u)du

)2

. (30)

Using (30) with s = t , we obtain

|E12| ≤ C
h−2|i|
n

(N (n))2

n∑

t=1

h2it Nt (Nt − 1).

Under (A1), similar arguments as in the proof of (14) yield that

nhdn E12 = O
(
hdn
)
= o(1). (31)

Next, let

cn =
⌊
h

− 2+2|i|+2d
1+α

n

⌋
with α > 1+ 2(1+ |i|)

d
.

We can write

E2 =
h−2|i|
n

(N (n))2

∑

0<s−t≤cn
t<s

At,s +
h−2|i|
n

(N (n))2

∑

s−t>cn
t<s

At,s := E21 + E22. (32)

For t < s, setting k = s − t and using (30), one can write

E21 ≤ C
h−2|i|
n

(N (n))2

cn∑

k=1

n∑

t=1

h|i|k+t h
|i|
t ≤ C

h−2|i|
n

(N (n))2
cn

n∑

t=1

h2|i|t .
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Arguing as in the proof of (14), we may obtain

nhdn E21 = O
(
hdncn

)
= o(1) as n → ∞. (33)

For E22, we have

E22 ≤ h−2|i|
n

(N (n))2

n−1∑

k=cn+1

n−k∑

t=1

h|i|k+t h
|i|
t

Nk+t∑

j=1

Nt∑

ℓ=1

∣∣∣∣Cov
[
φt,i(X(k+t) j ),φt,i(Xtℓ)

]∣∣∣∣.

Because K has compact support and hn ↓ 0, then using (A1) and (A4), the choice of
cn and (15), we obtain

nhdn E22 ≤ C
hd−2|i|
n

(N (n)/n)2
1
n

n−1∑

k=cn+1

n−k∑

p=1

h−2(d+1)
k+p ϵk

≤ C
h−(2+d+2|i|)
n

(N (n)/n)2

∞∑

k=cn+1

ϵk
1
n

n∑

p=1

(
h p

hn

)−2(d+1)

= O

⎛

⎝h−(d+2+2|i|)
n

∞∑

k=cn+1

ϵk

⎞

⎠ = O
(
h−(2+d+2|i|)
n c−α

n

)
= o(1). (34)

Finally, the asymptotic variance in (16) follows from (29), (31), (33) and (34).

5.2 Proofs of Theorems 3.2 and 3.3

Beforewe present the proofs of Theorems 3.2 and 3.3, we state some auxiliary lemmas.
Because some arguments for the proofs are similar to those employed in the proof of
Theorem 3.1, we shall only present the main differences. First, for any i ∈ Nd , t ∈ N,
1 ≤ j ≤ Nt , and (x,u, v) ∈ R2d × R, we set

ϕ (u, v) = v − r(u), ψ (v) = v1{|v|>bn} and Ut j,i = φt,i(Xt j )
[
ϕ(Xt j , Yt j ) − ψ

(
Yt j

)]
.

(35)

For each i ∈ Nd , define the truncated version of t∗n,i:

t̃n,i :=
1

N (n)

n∑

t=1

Nt∑

j=1

hitφt,i
(
Xt j

) [
Yt j1{|Yt j |≤bn} − r(Xt j )

]
, (36)

where bn → ∞ as n → ∞ and φt,i is defined in (24).
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Lemma 5.1 Let Assumptions (A1)–(A10) hold and i,k ∈ Nd such that 0 ≤ |i|, |k| ≤
2p. If fX is continuous on x, then

Cov
(
t̃n,i, t̃n,k

)
= 1

nhd−|i|−|k|
n

θ|i|+|k|−dσ
2
Y (x) fX(x)γi+k

κ
[1+ o(1)] (37)

and

Cov
(
t∗n,i − t̃n,i, t∗n,k − t̃n,k

)
= o

(
1

nhd−|i|−|k|
n

)

. (38)

Proof By conditioning on Xt j , a simple computation shows that

Cov
(
Ut j,i,Ut j,k

)
= E

[
φt,i(Xt j )φt,k(Xt j )

(
ϕ2 (Xt j , Yt j

)
− 2ϕ

(
Xt j , Yt j

)
ψ
(
Yt j

)
+ ψ2 (Yt j

) )]

−E
[
φt,i(Xt j )ψ

(
Yt j

) ]
E
[
φt,k(Xt j )ψ

(
Yt j

) ]

:= E1 − E2 + E3 − E4.

On the one hand,
Because σ 2

Y and fX are continuous, it follows by applying Bochner’s Lemma with
the help of (A3) and (A9) and the first part of (11) that

E1 =
∫

R2d
φt,i(u)φt,k(u)

[
E
(
Y 2∣∣X = u

)
− r2(u)

]
fX(u)du

= σ 2
Y (x) fX(x)γi+k

hdt
(1+ τt ) , τt → 0 as t → ∞. (39)

On the other hand, using again (11), Cauchy–Schwarz and Markov’s inequalities, we
have

|E2| ≤
{

sup
∥u−x∥≤c0ht

E
[
φ2
t,k(u)φ

2
t,i(u)

(
Yt j − r(u)

)2
Y 2
t j

]
P
[ ∣∣Yt j

∣∣ > bn
]}1/2

≤ c21h
−2d
t

[
max

{
E
(
Y 4
t j

)
, 2c2E|Yt j |3, c22E

(
Y 2
t j

) }
P
( ∣∣Yt j

∣∣ > bn
)]1/2

≤ Ch−2d
t (ln n)2/µe− λbn

2 .

Similarly, one can prove that |E3| + |E4| ≤ Ch−2d
t (ln n)2/µe− λbn

2 ; it follows that

∣∣∣Cov
(
Ut j,i,Ut j,k

) ∣∣∣ = σ 2
Y (x) fX(x)γi+k

hdt
(1+ τt )+ An,t , (40)
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where An,t = O
(

C(ln n)2/µe− λbn
2

h2dt

)
and τt → 0 as t → ∞. Next, we write

Cov
(
t̃n,i, t̃n,k

)
= 1

(N (n))2

n∑

t=1

h|i|+|k|
t

⎡

⎣
Nt∑

j=1

Cov
(
Ut j,i,Ut j,k

)
+
∑

j ̸=ℓ

Cov
(
Ut j,i,Utℓ,k

)
⎤

⎦

+ 1
(N (n))2

∑

t ̸=s

h|i|t h
|k|
s

Nt∑

j=1

Ns∑

ℓ=1

Cov
(
Ut j,i,Usℓ,k

)

:= F1 + F2 + F3.

For F1, using (40) and applying Toeplitz’s and Cesaro’s lemmas with the help of
Assumption (A1), we obtain

F1 =
1

nhd−|i|−|k|
n

θ|i|+|k|−d
σ 2
Y (x) fX(x)γi+k

κ
+ o(1) as n → ∞. (41)

Now, let us study F2 and F3. To this end, from (35), using (A2), (A7) and Bochner’s
lemma,weobtain for any (t, s) ∈ {1, . . . , n}2 and ( j, ℓ) ∈ {1, . . . , Nt }×{1, . . . , Ns},

∣∣∣E
(
Ut j,iUsℓ,k

) ∣∣∣ =
∣∣∣∣

∫

R2d

{∫

R2

[
v1 − ψ(v1) − r(u1)

][
v2 − ψ(v2) − r(u2)

]

× f(Yt j ,Ysℓ
)(v1, v2)dv1dv2

}

×φt,i(u1)φs,k(u2) f(Xt j ,Xsℓ
)
|
(
Yt j ,Ysℓ

)(u1,u2)du1du2

∣∣∣∣

≤ sup
∥u1−x∥≤c0ht
∥u2−x∥≤c0hs

[
|bn | + |r(u1)|

][
|bn | + |r(u2)|

]

×
∫

R2d

∣∣φt,i(u1)φs,k(u2)
∣∣ f(Xt j ,Xsℓ

)
|
(
Yt j ,Ysℓ

)(u1, u2)du1du2 ≤ Cb2n,

(42)

and similarly,

∣∣∣E
(
Ut j,i

) ∣∣∣ =
∣∣∣∣

∫

Rd+1
φt,i(u) [v − ψ(v) − r(u)] f (u, v)dudv

∣∣∣∣ ≤ Cbn . (43)

We deduce that

∣∣∣Cov
(
Ut j,i,Usℓ,k

) ∣∣∣ ≤ Cb2n, (44)
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which together with (A1), Toeplitz’s and Cesaro’s lemmas and the choice of bn leads
to

nhd−|i|−|k|
n F2 ≤ Cb2nh

d
n(

N (n)/n
)2

1
n

n∑

t=1

(
ht
hn

)|i|+|k|
Nt (Nt − 1) = O

(
b2nh

d
n

)
= o(1)

(45)

as n → ∞. Next, to study the term F3, we use a truncation device. Let

cn =
⌊
h

− 2+|i|+|k|+2d
1+α

n

⌋
with α >

dν + 2+ |i| + |k|
d(1 − ν)

, (46)

where ν is given in (A10), and write

F3 = 2
(N (n))2

∑

0<s−t≤cn
t<s

h|i|t h
|k|
s

Nt∑

j=1

Ns∑

ℓ=1

Cov
(
Ut j,i,Usℓ,k

)

+ 2
(N (n))2

∑

s−t>cn
t<s

h|i|t h
|k|
s

Nt∑

j=1

Ns∑

ℓ=1

Cov
(
Ut j,i,Usℓ,k

)

:= F31 + F32. (47)

Now, by (44), using (A1) and (A3) with the choice (46), combined with Cesaro’s
and Toeplitz’s lemmas and the definition of bn , we have

nhd−|i|−|k|
n |F31| ≤ Cb2nnh

d−|i|−|k|
n

1
(N (n))2

∑

0<s−t≤cn
t<s

h|i|t h
|k|
s Nt Ns

≤ Cb2nnh
d−|i|−|k|
n

1
(N (n))2

cn∑

k=1

n∑

p=1

h|i|k+ph
|k|
p Nk+pNp

= O
(
b2ncnh

d
n

)
= o(1),

as n → ∞. About F32, we go back to the decomposition (47).
For any t ∈ N and i ∈ Nd , let gt,i be the function defined by

gt,i (u, v) = φt,i(u)(v − r(u))1{
∥u−x∥≤c0ht , |v|≤bn

}(u, v),
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where c0 is defined in (11). If u = (u1, . . . , ud)T, then using (A2), we have for any
j = 1, . . . , d

∣∣∣∣
∂gt,i
∂u j

(u, v)
∣∣∣∣ ≤ C

⎛

⎜⎜⎝bn + sup{
∥u−x∥≤c0ht

}

∣∣∣∣
∂r
∂u j

(u)
∣∣∣∣

⎞

⎟⎟⎠ and
∣∣∣∣
∂gt,i(u, v)

∂v

∣∣∣∣ ≤ C.

(48)
Therefore, by Taylor’s formula, we obtain

sup
(u,v) ̸=(u′,v′)

∣∣∣gt,i(u, v) − gt,i(u′, v′)
∣∣∣ ≤ Cbnh

−(d+1)
t

( ∥∥u − u′∥∥
1 + ht |v − v′|

)
.

Consequently, for sufficiently large t , the Lipschitz modulus of continuity of gt,i and
gs,k can be bounded as

L(gt,i)L(gs,k) ≤ Cb2nh
−(d+1)
t h−(d+1)

s , (49)

which together with Assumption (A4), the second part of (44), leads to

∣∣∣Cov
(
Ut j,i,Usℓ,k

) ∣∣∣ ≤ Cb2nh
−(d+1)
t h−(d+1)

s ϵt−s . (50)

Therefore, Assumptions (A1) and (A3)(i), the condition limn→∞ nα
∑

k≥n+1 ϵk = 0
combined with the choice (46) and the definition of bn ensure that

nhd−|i|−|k|
n |F32| ≤ Cb2nnh

d−|i|−|k|
n

(N (n))2

∑

s−t>cn
t<s

h|i|−(d+1)
t h|k|−(d+1)

s Nt Nsϵt−s

= O

⎛

⎝b2nh
−(2+d+|i|+|k|)
n

∞∑

k=cn+1

ϵk

⎞

⎠

= O
(
b2nh

−(2+d+|i|+|k|)
n c−α

n

)
= o(1),

asn → ∞.We deduce that

nhd−|i|−|k|
n |F3| = o(1) as n → ∞, (51)

which proves (37). Regarding (38), using (11), (A8) and the Cauchy–Schwarz inequal-
ity, we have

E
∣∣∣φt,i(Xt j )φs,k(Xsℓ)ψ

(
Yt j

)
ψ (Ysℓ)

∣∣∣ ≤ C

hds h
d
t
E
∣∣∣ψ

(
Yt j

)
ψ (Ysℓ)

∣∣∣ ≤ Cb2−δ
n

hdt hds
E
∣∣Y
∣∣δ,
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and in the same manner,

E
∣∣∣φt,i(Xt j )ψ

(
Yt j

) ∣∣∣E
∣∣∣φs,k(Xsℓ)ψ (Ysℓ)

∣∣∣ ≤ Cb2−δ
n

hdt hds
E
∣∣Y
∣∣δ.

Therefore, Assumption (A1) and Toeplitz and Cesaro’s lemmas indicate that

nhd−|i|−|k|
n Cov

(
tn,i − t̃n,i, tn,k − t̃n,k

)
= O

(
b2−δ
n nh−d

n

)
,

and (38) follows from Assumption (A10) and the choice of bn , which achieves the
proof of Lemma 5.1.
Theorem 3.2 follows now from Lemma 5.1, the Cauchy–Schwarz inequality and the
fact that
∣∣∣Cov

(
t∗ni, t

∗
nk
) ∣∣∣ ≤

∣∣∣Cov
(
t∗n,i − t̃n,i, t∗n,k − t̃n,k

) ∣∣∣+
∣∣∣Cov

(
t̃n,i, t̃n,k

) ∣∣∣

+
√
Var

(
t∗n,i − t̃n,i

)
Var

(
t̃n,k

)
+
√
Var

(
t∗n,k − t̃n,k

)
Var

(
t̃n,i

)
.

Next, Theorem 3.3 is a consequence of Lemmas 5.2–5.4 below and the fact that an
arbitrary linear combination of h−i

n t∗n,i can be represented as

∑

0≤|i|≤p

cih−i
n t∗n,i = An + Bn + Cn,

with

An :=
∑

0≤|i|≤p

ci
hin

(
t̃n,i − E

(
t̃n,i

) )
, Bn :=

∑

0≤|i|≤p

ci
hin

E
(
t̃n,i

)
and

Cn :=
∑

0≤|i|≤p

ci
hin

(
t∗n,i − t̃n,i

)
,

where t∗n,i and t̃n,i are defined in (21) and (36), respectively, and bn = (δ ln n)1/µ for
δ, µ > 0.

Lemma 5.2 Under Assumptions (A1)–(A11), we obtain

√
nhdn An

D−→ N
(
0, σ 2

A(x)
)
,

where

σ 2
A(x) = σ 2

Y (x) fX(x)κ
−1

∑

0≤|i|,|k|≤p

cickθ|i|+|k|−dγi+k.
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Proof Set

Wnt =
√
nhdn

(
N (n)

)−1 ∑

0≤|i|≤p

cih−i
n hit

Nt∑

j=1

Ut j,i and Znt = Wnt − E (Wnt ) .

Then,
√
nhdn An can be rewritten as

√
nhdn An =

n∑

t=1

Znt . (52)

Now, let us define the sequences of real numbers (bn)n∈N, (pn)n∈N and (qn)n∈N such
that

bn → ∞, b2nh
d
n → 0, pn → ∞, qn → ∞, pn/n → 0 and qn/pn → 0.

(53)

We employ Bernstein’s big-block and small-block procedure. Partition the set
{1, 2, · · · , n} into rn + 1 subsets with large blocks of size pn and small blocks of
size qn and set

rn =
⌊

n
pn + qn

⌋
. (54)

For any m = 1, . . . , r , let Tn,m , T ′
n,m and T

′′
n,m be defined as follows:

Tn,m =
km+pn−1∑

t=km

Znt , with km := (m − 1)(pn + qn)+ 1, (55)

T ′
n,m =

lm+qn−1∑

t=lm

Znt , with lm := (m − 1)(pn + qn)+ pn + 1, (56)

T
′′
n,m =

n∑

t=rn(pn+qn)+1

Znt . (57)

We can write

√
nhdn An =

rn∑

m=1

Tn,m +
rn∑

m=1

T ′
n,m + T

′′
n,m := Sn,1 + Sn,2 + Sn,3. (58)

To obtain the asymptotic normality of
√
nhdn An , we have to show that
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E
[
S2n,2

]
→ 0, E

[
S2n,3

]
→ 0, (59)

∣∣∣∣∣E
[
eit Sn,1

]
−

rn∏

m=1

E
[
eitTn,m

]∣∣∣∣∣ → 0, (60)

s2n :=
rn∑

m=1

E(T 2
n,m) → σ 2

A(x), (61)

and for every ε > 0,

1
s2n

rn∑

m=1

E
[
T 2
n,m1|Tn,m |>εs2n

]
→ 0. (62)

Relation (59) implies that Sn,2 and Sn,3 are asymptotically negligible, (60) shows
that the random variables Tn,m in Sn,1 are asymptotically independent, and (61) and
(62) are the standard Lindeberg–Feller conditions for the asymptotic normality of Sn,1
under independence. Let us now prove (59). From (56) and (58), we have

E
[
S2n,2

]
=

rn∑

m=1

lm+qn−1∑

t=lm

Var (Wnt )+ 2
rn∑

m=1

∑

lm≤t<s≤lm+qn−1

Cov (Wnt ,Wns)

+ 2
rn∑

1≤m<m′≤r

lm+qn−1∑

t=lm

lm′+qn−1∑

s=lm′

Cov (Wnt ,Wns) := 81 + 82 + 83.

Using (35), we can write

81 = nhdn
(
N (n)

)−2 rn∑

m=1

lm+qn−1∑

t=lm

Var

⎧
⎨

⎩
∑

0≤|i|≤pn

cih−i
n h|i|t

Nt∑

j=1

Ut j,i

⎫
⎬

⎭ .

Note that, by (44), because (hn) is decreasing, using Assumption (A1), we can bound

Var (Wnt ) = nhdn
(
N (n)

)−2 ∑

0≤|i|,|k|≤p

cick

(
ht
hn

)i+k Nt∑

j=1

Nt∑

ℓ=1

Cov
(
Ut j,i,Utℓ,k

)

≤ Cnhdn
(
N (n)

)−2
b2n

∑

0≤|i|,|k|≤p

cick

(
ht
hn

)i+k
N2
t ≤ Cn

(
N (n)

)−2
b2nh

d−2p
n .
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Therefore,

81 ≤ C
b2nrnqn

nh2p−d
n

= O

(
qn

pnh
2p
n

)

as n → ∞, (63)

and similarly, using the Cauchy–Schwarz inequality, we have

82 ≤ C
b2nrnq

2
n

nh2p−d
n

= O

(
q2n

pnh
2p
n

)

as n → ∞. (64)

For the last term of E[S2n,2], we can write

83 ≤ 2
nhdn(
N (n)

)2

rn∑

1≤m<m′≤rn

lm+qn−1∑

t=lm

lm′+qn−1∑

s=lm′

∑

0≤|i|,|k|≤p

cick

(
ht
hn

)i ( hs
hn

)k

×
Nt∑

j=1

Ns∑

ℓ=1

∣∣Cov
(
Ut j,i,Usℓ,k

)∣∣ .

By the boundedness of the covariance term in (50) and because ϵt and (hn) are decreas-
ing, we obtain

83 ≤ C
nb2nh

d
n(

N (n)
)2

rn−1∑

τ=1

rn∑

m=1

lm+qn−1∑

t=lm

lm′+qn−1∑

s=lm′

∑

0≤|i|,|k|≤p

cick

(
ht
hn

)i ( hs
hn

)k ϵτ (pn+qn)

(hths)(d+1)

≤ C
nq2nrnb

2
n(

N (n)
)2 hd+2p+2

n

rn−1∑

τ=1

e−τqn = O

(
q2n

pnh
2(d+p+1)
n

)

as n → ∞. (65)

Therefore, the proof of (59) can be deduced from (63), (64) and (65), and the sequences
pn and qn are chosen such that

qn

pnh
2p
n

→ 0,
q2n

pnh
2p
n

→ 0 and
q2n

pnh
2(d+p+1)
n

→ 0 as n → ∞. (66)

Next, consider the contribution of Sn,3. Setting Mn = rn(pn + qn),

E
(
S2n,3

)
=

n∑

t=Mn+1

Var (Wnt )+ 2
∑

Mn+1≤t<s≤n

Cov (Wnt ,Wns) := 91 + 92.

By (36) and (37) in the second part of Lemma 5.1, we can write

nhdn Var

⎛

⎝
∑

0≤|i|≤p

cih−i
n t̃n,i

⎞

⎠ ∼
n∑

t=1

Var (Znt ) =
Mn∑

t=1

Var (Znt )+
n∑

t=Mn+1

Var (Znt ) .
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Because Mn ∼ n, Assumption (A11)(i) ensures that nhdn
MnhdMn

→ 1 as n → ∞. It

follows that

Mn∑

t=1

Var (Znt ) ∼
n∑

t=1

Var (Znt ) = σ 2
A(x) [1+ o(1)] as n → ∞.

Therefore, 91 = o(1) as n → ∞. For 92, using (51), it is easy to see that

92 ≤
∑

0≤|i|,|k|≤p

cick

∣∣∣∣∣∣
nhd−i−k

n(
N (n)

)2
∑

t ̸=s

hit h
k
s

Nt∑

j=1

Ns∑

ℓ=1

Cov
(
Ut j,i,Usℓ,k

)
∣∣∣∣∣∣

= o(1) as n → ∞.

Consequently, (57) follows. To prove (60), observe that for any m = 1, . . . , rn , if we
let

:m =
(
Xkm1, . . . ,Xkm Nkm

, . . . ,Xkm+p−11, . . . ,Xkm+p−1Nkm+p−1

)
,

ϒm =
(
Ykm1, . . . ,YkmNkm

, . . . ,Ykm+p−11, . . . ,Ykm+p−1Nkm+p−1

)
,

and <m =
∑km+pn−1

t=km
Nt , then using (48), it can be shown that there exists a mea-

surable function Gm : Rd<m × R<m → R such that

exp
(
i tTn,rn

)
= Grn

(
:rn ,ϒrn

)
and exp

(

i t
rn−1∑

m=1

Tn,m

)

=
rn∏

m=1

Gm (:m,ϒm) ,

where

sup
1≤i≤d<m

∥∥∥∥
∂Gm

∂ui

∥∥∥∥
∞

≤ C
|t |bn

√
nhdn

N (n)

km+pn−1∑

s=km

∑

0≤|i|≤p

cick

(
hs
hn

)i

,

which together with (24) and the decrease of (hn) indicates that

L(Gm) ≤ C
|t |bn

√
nhdn pn

N (n)hd+p+1
n

.

Therefore,

∣∣∣∣∣Cov

[

exp

(

i t
rn−1∑

m=1

Tn,m

)

, exp
(
i tTn,rn

)
]∣∣∣∣∣ ≤ C

t2b2nnh
d
n p

2
nrnϵqn

(N (n))2h2(d+p+1)
n

.
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Using (53) and arguing as in Doukhan and Louhichi (2001), we obtain from the last
relation ∣∣∣∣∣E

[
eit

∑rn
m=1 Tn,m

]
−

rn∏

m=1

E
[
eitTn,m

]∣∣∣∣∣ ≤ t2 pnrne−ρqn

h2(d+p+1)
n

. (67)

Then, the proof of (60) follows by taking t/
√
rn pn rather than t in the above relation

as soon as
e−ρqn

h2(d+p+1)
n

→ 0 as n → ∞. (68)

For the proof of (61), using (58), we can write

Var(Sn,1) = Var

(
n∑

t=1

Znt

)

− Var(Sn,2) − Var(Sn,3)

− 2Cov(Sn,1, Sn,2) − 2Cov(Sn,2, Sn,3) − 2Cov(Sn,1, Sn,3).

Then, Cauchy–Schwarz’s inequality combined with (59) and (37) in Lemma 5.1
ensures that

lim
n→∞Var(Sn,1) = lim

n→∞Var

(
n∑

t=1

Znt

)

= σ 2
A(x). (69)

Now, using the arguments employed before for bounding 83, we find that

∑

m ̸=m′
Cov(Tn,m, Tn,m′) → 0 as n → ∞. (70)

Then, (61) follows from (69), (70) and the fact that

Var(Sn,1) = s2n + 2
∑

1≤m<m′≤rn

Cov(Tn,m, Tn,m′).

For the proof of (62), first note that

∣∣Tn,m
∣∣ ≤ C

pnbn
h p
n
√
nhdn

.

It follows from Markov’s inequality that

1
s2n

rn∑

m=1

E
[
T 2
n,m1|Tn,m |>εs2n

]
= O

(
p2nb

2
n

nhd+2p
n

)

.

Therefore, (62) is satisfied as soon as

lim
n→∞

p2nb
2
n

nhd+2p
n

= 0. (71)
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By Assumption (A11)(ii) and taking pn = ⌊na⌋, qn = ⌊log n⌋ with a >

2ν (d + p + 1), we obtain (66), (68) and (71).

Lemma 5.3 Assume that (A1)–(A3) and (A8) hold. Then,

lim
n→∞

√
nhdn Bn = 0.

Proof Note that by (36),

t̃n,i :=
1

N (n)

n∑

t=1

Nt∑

j=1

hitφt,i
(
Xt j

) [
Yt j − r(Xt j ) − Yt j1{|Yt j |>bn}

]
.

Then, by conditioning on Xt j , we obtain

∣∣E(t̃n,i)
∣∣ ≤ 1

N (n)

n∑

t=1

Nt∑

j=1

hit
∣∣∣E

[
φt,i

(
Xt j

)
Yt j1{|Yt j |>bn}

]∣∣∣ .

Cauchy–Schwarz and Markov’s inequalities ensure that

∣∣E(t̃n,i)
∣∣ ≤ C

N (n)

n∑

t=1

Nt∑

j=1

hi−d
t

{
E
[
Y 2
t j

]
P
[
|Yt j | > bn

]}1/2

≤ C
N (n)

n∑

t=1

Nt∑

j=1

hi−d
t

{
E
[
Y 2
t j

]
E
[
eλ|Yt j |µ

]
e−λbµn

}1/2

≤ Cn−λδ/2(ln n)1/µ

n

n∑

t=1

hi−d
t .

Therefore, using (A3)(ii) with the decrease of the bandwidth hn , we have

√
nhdn Bn ≤ C

n1−λδ/2(ln n)1/µ
√
nhdn

∑

0≤|i|≤p

ci
1
n

n∑

t=1

(
ht
hn

)i

= o(1) as soon as δ > 2/λ,

and Lemma 5.3 follows.

Lemma 5.4 Under Assumption (A8),

√
nhdnCn → 0 a.s.
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Proof Observe that for any ε > 0,

P
[√

nhdnCn > ε

]
≤ P

[
n⋃

t=1

{|Yt j | > bn}
]

≤ E
[
eλ|Y |µ

]
n1−λδ,

where the last inequality follows by setting bn = (δ ln n)
1
µ ,with the help of Markov’s

inequality. Therefore, Assumption (A8) ensures that for any ε > 0,

∞∑

n=1

P
[√

nhdnCn > ε

]
< ∞ if δ > 2/λ,

and Lemma 5.4 follows by applying Borel–Cantelli’s Lemma. !

5.3 Proof of Corollary 3.2

Recall that n p+1 is the number of derivative elements 1
k!

∂ |k|r
∂xk (x) such that |k| = p+1,

and for any t ∈ {1, . . . , n}, define

Mt =
(
r(Xt1), . . . , r(Xt Nt )

)T
, β∗

n = S−1
n

n∑

t=1

X T
t &

(n)
t Mt , (72)

<t =

⎛

⎜⎜⎜⎝

(Xt1 − x)[q] . . . (Xt1 − x)[q+n p+1]

(Xt2 − x)[q] . . . (Xt2 − x)[q+n p+1]
...

...(
Xt Nt − x

)[q]
. . .

(
Xt Nt − x

)[q+n p+1]

⎞

⎟⎟⎟⎠
.

Then, we can write for sufficiently large t ,

Mt = Xtβ + <t bp+1(x)+ o
(
h p+1
t 1Nt

)
, with 1Nt = (1, . . . , 1)T ∈ RNt .

Therefore, setting

Dn =
n∑

t=1

X T
t &

(n)
t <t ,

we deduce from (72) and Toeplitz’s Lemma that

β∗
n = β + S−1

n

[
Dnbp+1(x)+ op

(
Hn1qh

p+1−d
n

)]
.
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Next, a simple computation shows that

Dn = Hn Anh
p+1
n ,

where An is a q × n p+1 matrix whose (i, j)-th component is an,[i],[ j] =
h−([i−1]+[ j−1])
n s0n,[i−1]+[ j−1], 1 ≤ i ≤ q and q + 1 ≤ j ≤ q + n p+1 + 1. Simi-

lar to (18), the matrix An converges in mean square error to f (x)A. Then, we can
deduce that

β∗
n = β + S−1

n Hn Anbp+1(x)h
p+1
n + op

(
S−1
n Hnh

p+1
n 1q

)

= β + H−1
n HnS−1

n Hn Anbp+1(x)h
p+1
n + op

(
H−1
n HnS−1

n Hnh
p+1
n 1q

)

= β + H−1
n

[
B−1Abp+1(x)h

p+1
n + op

(
h p+1
n 1q

)]
. (73)

Because

S−1
n T ∗

n = βn − β∗
n ,

by (73), we have

HnS−1
n T ∗

n = Hn (βn − β) −
[
B−1Abp+1(x)h

p+1
n + op

(
h p+1
n 1q

)]
. (74)

Now, by Slutsky’s Theorem and (18), we obtain

√
nhdn HnS−1

n T ∗
n

D−→ N
(

0q ,
σ 2
Y (x) fX(x)

κ
B−1Ṽ B−1

)

. (75)

Therefore, Corollary 3.2 follows from expressions (74) and (75).
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