[en] Our quantum device is a solid-state array of semiconducting quantum dots
that is addressed and read by 2D electronic spectroscopy. The experimental ultrafast
dynamics of the device is well simulated by solving the time-dependent Schrödinger equation
for a Hamiltonian that describes the lower electronically excited states of the dots and three
laser pulses. The time evolution induced in the electronic states of the quantum device is
used to emulate the quite different nonequilibrium vibrational dynamics of a linear triatomic
molecule. We simulate the energy transfer between the two local oscillators and, in a more
elaborate application, the expectation values of the quantum mechanical creation and
annihilation operators of each local oscillator. The simulation uses the electronic coherences
engineered in the device upon interaction with a specific sequence of ultrafast pulses. The
algorithm uses the algebraic description of the dynamics of the physical problem and of the hardware.
Research Center/Unit :
MolSys - Molecular Systems - ULiège
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Komarova, Ksenia
Gattuso, Hugo ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Levine, R. D.
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
Quantum Device Emulates the Dynamics of Two Coupled Oscillators
Publication date :
2020
Journal title :
Journal of Physical Chemistry Letters
eISSN :
1948-7185
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467-488, 10.1007/BF02650179
Milburn, G. J. The Feynman Processor: Quantum Entanglement and the Computing Revolution; Perseus Books: Reading, MA, 1999.
Nielsen, M. A.; Chuang, I. L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, 2010.
Shapiro, M.; Brumer, P. Quantum Control of Molecular Processes; Wiley: Weinheim, 2012.
Yuen-Zhou, J.; Krich, J. J.; Kassal, I.; Johnson, A. S.; Aspuru-Guzik, A. Ultrafast Spectroscopy. In Quantum Information and Wavepackets; IOP Publishing: Bristol, 2014. 10.1088/978-0-750-31062-8.
Kais, S. Quantum Information and Computation for Chemistry; Wiley and Sons: Hoboken, NJ, 2014; Vol. 154.
Lee, J.; Huggins, W. J.; Head-Gordon, M.; Whaley, K. B. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. J. Chem. Theory Comput. 2019, 15, 311-324, 10.1021/acs.jctc.8b01004
Albash, T.; Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002, 10.1103/RevModPhys.90.015002
Gyongyosi, L.; Imre, S. A Survey on quantum computing technology. Comput. Sci. Rev. 2019, 31, 51-71, 10.1016/j.cosrev.2018.11.002
National Academies of Sciences Engineering and Medicine; Quantum Computing: Progress and Prospects (2019); The National Academies Press: Washington, DC, 2019.
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505-510, 10.1038/s41586-019-1666-5
Smith, A.; Kim, M. S.; Pollmann, F.; Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf 2019, 5, 106, 10.1038/s41534-019-0217-0
Cao, Y. et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856-10915, 10.1021/acs.chemrev.8b00803
Xia, R.; Kais, S. Quantum machine learning for electronic structure calculations. Nat. Commun. 2018, 9, 4195, 10.1038/s41467-018-06598-z
Argüello-Luengo, J.; González-Tudela, A.; Shi, T.; Zoller, P.; Cirac, J. I. Analogue quantum chemistry simulation. Nature 2019, 574, 215-218, 10.1038/s41586-019-1614-4
Hempel, C. et al. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022, 10.1103/PhysRevX.8.031022
Yung, M. H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E. From transistor to trapped-ion computers for quantum chemistry. Sci. Rep. 2015, 4, 3589, 10.1038/srep03589
Daskin, A.; Kais, S. Direct application of the phase estimation algorithm to find the eigenvalues of the Hamiltonians. Chem. Phys. 2018, 514, 87-94, 10.1016/j.chemphys.2018.01.002
Ciliberto, C.; Herbster, M.; Ialongo Alessandro, D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum machine learning: a classical perspective. Proc. R. Soc. London, Ser. A 2018, 474, 20170551, 10.1098/rspa.2017.0551
Schuld, M.; Sinayskiy, I.; Petruccione, F. Prediction by linear regression on a quantum computer. Phys. Rev. A: At., Mol., Opt. Phys. 2016, 94, 022342, 10.1103/PhysRevA.94.022342
Gao, X.; Zhang, Z. Y.; Duan, L. M. A quantum machine learning algorithm based on generative models. Sci. Adv. 2018, 4, eaat9004 10.1126/sciadv.aat9004
Hearing-the-Quantum Top 10 Quantum Experiments in 2019, accessed https://medium.com/swlh/top-quantum-computing-experiments-of-2019-1157db177611.
Pednault, E.; Gunnels, J.; Maslov, D.; Gambetta, J. On Quantum Supremacy, accessed https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/.
Collini, E.; Gattuso, H.; Bolzonello, L.; Casotto, A.; Volpato, A.; Dibenedetto, C. N.; Fanizza, E.; Striccoli, M.; Remacle, F. Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in CdSe Nanocrystals at Room Temperature. J. Phys. Chem. C 2019, 123, 31286-31293, 10.1021/acs.jpcc.9b11153
Collini, E. et al. Room-Temperature Inter-Dot Coherent Dynamics in Multilayer Quantum Dot Materials. J. Phys. Chem. C 2020, 124, 16222, 10.1021/acs.jpcc.0c05572
Kambhampati, P. Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots. Acc. Chem. Res. 2011, 44, 1-13, 10.1021/ar1000428
Caram, J. R.; Zheng, H.; Dahlberg, P. D.; Rolczynski, B. S.; Griffin, G. B.; Dolzhnikov, D. S.; Talapin, D. V.; Engel, G. S. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. J. Chem. Phys. 2014, 140, 084701, 10.1063/1.4865832
Turner, D. B.; Hassan, Y.; Scholes, G. D. Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy. Nano Lett. 2012, 12, 880-886, 10.1021/nl2039502
Cassette, E.; Dean, J. C.; Scholes, G. D. Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals. Small 2016, 12, 2234-2244, 10.1002/smll.201502733
Mukamel, S. Principle of Nonlinear Optical Spectroscopy; Oxfrod University Press: Oxford, 1995.
Warren, W. S. The Usefulness of NMR Quantum Computing. Science 1997, 277, 1688, 10.1126/science.277.5332.1688
Gattuso, H.; Levine, R. D.; Remacle, F., Massively Parallel Classical Logic via Coherent Dynamics of an Ensemble of Quantum Systems with Dispersion in Size. Proc. Natl. Acad. Sci. U.S.A. 2020, accepted. 10.26434/chemrxiv.12370538.v1.
Alhassid, Y.; Levine, R. D. Connection between the maximal entropy and the scattering theoretic analyses of collision processes. Phys. Rev. A: At., Mol., Opt. Phys. 1978, 18, 89-116, 10.1103/PhysRevA.18.89
Gilmore, R. Lie Groups, Lie Algebras and Some of Their Applications; Dover: Mineola, 2012.
Herzberg, G. Molecular Spectra and Molecular Structure; Van Nostrand: New York, 1945; Vol. II.
Efros, A. L.; Rosen, M. The electronic structure of semi-conducting nanocrystal. Annu. Rev. Mater. Sci. 2000, 30, 475-521, 10.1146/annurev.matsci.30.1.475
Sercel, P. C.; Efros, A. L. Band-Edge Exciton in CdSe and Other II-VI and III-V Compound Semiconductor Nanocrystals-Revisited. Nano Lett. 2018, 18, 4061-4068, 10.1021/acs.nanolett.8b01980
Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 16338-16346, 10.1103/PhysRevB.53.16338
Wong, C. Y.; Scholes, G. D. Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals. J. Lumin. 2011, 131, 366-374, 10.1016/j.jlumin.2010.09.015
Gattuso, H.; Fresch, B.; Levine, R. D.; Remacle, F. Coherent Exciton Dynamics in Ensembles of Size-Dispersed CdSe Quantum Dot Dimers Probed via Ultrafast Spectroscopy: A Quantum Computational Study. Appl. Sci. 2020, 10, 1328, 10.3390/app10041328
Child, M. S.; Lawton, R. T. Local and normal vibrational states: a harmonically coupled anharmonic-oscillator model. Faraday Discuss. Chem. Soc. 1981, 71, 273-285, 10.1039/dc9817100273
Lehmann, K. K. On the relation of Child and Lawton's harmonically coupled anharmonic-oscillator model and Darling-Dennison couplinga). J. Chem. Phys. 1983, 79, 1098, 10.1063/1.445849
Levine, R. D. Representation of one-dimensional motion in a morse potential by a quadratic hamiltonian. Chem. Phys. Lett. 1983, 95, 87-90, 10.1016/0009-2614(83)85071-4
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.