[en] The ductile fracture behavior of a high strength steel is investigated using a micromechanics-based approach with the objective to build a predictive framework for the fracture strain and
crack propagation under different loading conditions. Part I of this study describes the experimental results and the determination of the elastoplastic behavior and damage nucleation
under different stress triaxiality and Lode parameter. The damage mechanism starts early
void nucleation from elongated inclusions, either by particle cracking under loading oriented
along the major axis, or by matrix decohesion when the main loading is transverse. Void
nucleation is followed by plastic growth and coalescence. The long inclusion axis is preferentially aligned in one direction leading to signi cant failure anisotropy with the fracture strain in the transverse direction being almost 50% lower compared to the longitudinal one, even though the plastic behavior is isotropic. The experimental data are first used to calibrate
the elastoplastic model. An enhanced anisotropic nucleation model is then developed and
integrated into the Gurson-Tvergaard-Needleman scheme. The parameters identification of
the anisotropic nucleation model is finally performed and validated towards the experimental
results. All these elements are subsequently used in Part II to simulate the full failure
behavior of all testing specimens in the entire spectrum of stress states, from nucleation to
final failure.
Benzerga, A.A., Leblond, J.-B., Ductile fracture by void growth to coalescence. Aref, H., van der Giessen, E., (eds.) Advances in applied mechanics Advances in applied mechanics, vol. 44, 2010, Elsevier, 169–305, 10.1016/S0065-2156(10)44003-X URL http://www.sciencedirect.com/science/article/pii/S006521561044003X.
Benzerga, A.A., Leblond, J.-B., Needleman, A., Tvergaard, V., Ductile failure modeling. Int J Fract 201:1 (2016), 29–80, 10.1007/s10704-016-0142-6.
Pineau, A., Benzerga, A., Pardoen, T., Failure of metals i: Brittle and ductile fracture. Acta Mater 107 (2016), 424–483, 10.1016/j.actamat.2015.12.034 URL http://www.sciencedirect.com/science/article/pii/S1359645415301403.
Goods, S., Brown, L., Overview no. 1: The nucleation of cavities by plastic deformation. Acta Metall 0001-6160, 27(1), 1979, 1–15, 10.1016/0001-6160(79)90051-8 URL http://www.sciencedirect.com/science/article/pii/0001616079900518.
Pineau, A., Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels. Advances in Fracture Mechanics Research, ICF5, 1982, 1982, Pergamon, 553–577.
Montheillet, F., Moussy, F., Physique et mécanique de l'endommagement. 1986, les Ed. de Physique.
Pineau, A., Pardoen, T., Failure mechanisms of metals. Compr Struct Integr Encyclopedia 2 (2007), 684–797.
Babout, L., Brechet, Y., Maire, E., Fougères, R., On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater 1359-6454, 52(15), 2004, 4517–4525, 10.1016/j.actamat.2004.06.009 URL http://www.sciencedirect.com/science/article/pii/S1359645404003477.
Chu, C., Needleman, A., Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol 102:3 (1980), 249–256.
Lassance, D., Scheyvaerts, F., Pardoen, T., Growth and coalescence of penny-shaped voids in metallic alloys. Eng Fract Mech 00137944, 73(8), 2006, 1009–1034, 10.1016/j.engfracmech.2005.12.004 URL https://linkinghub.elsevier.com/retrieve/pii/S0013794405003048.
Huber, G., Brechet, Y., Pardoen, T., Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys. Acta Mater 1359-6454, 53(9), 2005, 2739–2749, 10.1016/j.actamat.2005.02.037 URL http://www.sciencedirect.com/science/article/pii/S1359645405001357.
Beremin, F., Cavity formation from inclusions in ductile fracture of A508 steel. Metall Trans A 12:5 (1981), 723–731.
Pardoen, T., Hutchinson, J., An extended model for void growth and coalescence. J Mech Phys Solids 0022-5096, 48(12), 2000, 2467–2512, 10.1016/S0022-5096(00)00019-3 URL http://www.sciencedirect.com/science/article/pii/S0022509600000193.
Barsoum, I., Faleskog, J., Rupture mechanisms in combined tension and shear—Experiments. Int J Solids Struct 0020-7683, 44(6), 2007, 1768–1786, 10.1016/j.ijsolstr.2006.09.031 physics and mechanics of advanced materials. URL http://www.sciencedirect.com/science/article/pii/S0020768306003921.
Bai, Y., Wierzbicki, T., A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 0749-6419, 24(6), 2008, 1071–1096, 10.1016/j.ijplas.2007.09.004 URL http://www.sciencedirect.com/science/article/pii/S0749641907001246.
Nahshon, K., Hutchinson, J., Modification of the gurson model for shear failure. Eur J Mech A Solids 0997-7538, 27(1), 2008, 1–17, 10.1016/j.euromechsol.2007.08.002 URL http://www.sciencedirect.com/science/article/pii/S0997753807000721.
Xue, L., Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 0013-7944, 75(11), 2008, 3343–3366, 10.1016/j.engfracmech.2007.07.022 Local Approach to Fracture (1986–2006): Selected papers from the 9th European Mechanics of Materials Conference. URL http://www.sciencedirect.com/science/article/pii/S0013794407003220.
Gao, X., Zhang, T., Zhou, J., Graham, S.M., Hayden, M., Roe, C., On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int J Plast 27:2 (2011), 217–231, 10.1016/j.ijplas.2010.05.004.
Barsoum, I., Faleskog, J., Pingle, S., The effect of stress state on ductility in the moderate stress triaxiality regime of medium and high strength steels. Int J Mech Sci 0020-7403, 65(1), 2012, 203–212, 10.1016/j.ijmecsci.2012.10.003 URL http://www.sciencedirect.com/science/article/pii/S0020740312002226.
Faleskog, J., Barsoum, I., Tension–torsion fracture experiments—Part i: Experiments and a procedure to evaluate the equivalent plastic strain. Int J Solids Struct 0020-7683, 50(25), 2013, 4241–4257, 10.1016/j.ijsolstr.2013.08.029 URL http://www.sciencedirect.com/science/article/pii/S0020768313003454.
Achouri, M., Germain, G., Santo, P.D., Saidane, D., Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des 0261-3069, 50, 2013, 207–222, 10.1016/j.matdes.2013.02.075 URL http://www.sciencedirect.com/science/article/pii/S0261306913001866.
Dunand, M., Mohr, D., Effect of lode parameter on plastic flow localization after proportional loading at low stress triaxialities. J Mech Phys Solids 0022-5096, 66, 2014, 133–153, 10.1016/j.jmps.2014.01.008 URL http://www.sciencedirect.com/science/article/pii/S0022509614000180.
Zhu, Y., Engelhardt, M.D., Kiran, R., Combined effects of triaxiality, lode parameter and shear stress on void growth and coalescence. Eng Fract Mech, 199, 2018, 10.1016/j.engfracmech.2018.06.008 410–437. URL http://www.sciencedirect.com/science/article/pii/S0013794418300766.
Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: Part I - Yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:1 (1977), 2–15.
Tvergaard, V., Needleman, A., Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 0001-6160, 32(1), 1984, 157–169, 10.1016/0001-6160(84)90213-X URL http://www.sciencedirect.com/science/article/pii/000161608490213X.
Needleman, A., Tvergaard, V., An analysis of ductile rupture in notched bars. J Mech Phys Solids 0022-5096, 32(6), 1984, 461–490, 10.1016/0022-5096(84)90031-0 URL http://www.sciencedirect.com/science/article/pii/0022509684900310.
Gologanu, M., Leblond, J.-B., Devaux, J., Approximate models for ductile metals containing non-spherical voids - case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 0022-5096, 41(11), 1993, 1723–1754, 10.1016/0022-5096(93)90029-F URL http://www.sciencedirect.com/science/article/pii/002250969390029F.
Gologanu, M., Leblond, J.-B., Devaux, J., Approximate models for ductile metals containing nonspherical voids - case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol 116:3 (1994), 290–297.
Thomason, P., A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 0001-6160, 33(6), 1985, 1087–1095, 10.1016/0001-6160(85)90202-0 URL http://www.sciencedirect.com/science/article/pii/0001616085902020.
Thomason, P., Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids. Acta Metall 0001-6160, 33(6), 1985, 1079–1085, 10.1016/0001-6160(85)90201-9 URL http://www.sciencedirect.com/science/article/pii/0001616085902019.
Benzerga, A., Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 0022-5096, 50(6), 2002, 1331–1362, 10.1016/S0022-5096(01)00125-9 URL http://www.sciencedirect.com/science/article/pii/S0022509601001259.
Scheyvaerts, F., Pardoen, T., Onck, P., A new model for void coalescence by internal necking. Int J Damage Mech 19:1 (2010), 95–126, 10.1177/1056789508101918 arXiv:https://doi.org/10.1177/1056789508101918.
Benzerga, A., Leblond, J.-B., Effective yield criterion accounting for microvoid coalescence. J Appl Mech, 81(3), 2014, 031009.
Zhang, Z., Thaulow, C., Ødegård, J., A complete gurson model approach for ductile fracture. Eng Fract Mech 0013-7944, 67(2), 2000, 155–168, 10.1016/S0013-7944(00)00055-2 URL http://www.sciencedirect.com/science/article/pii/S0013794400000552.
Benzerga, A.A., Besson, J., Batisse, R., Pineau, A., Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain. Modelling Simulation Mater Sci Eng, 10(1), 2002, 73 URL http://stacks.iop.org/0965-0393/10/i=1/a=306.
Besson, J., Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int J Plast 0749-6419, 25(11), 2009, 2204–2221, 10.1016/j.ijplas.2009.03.001 URL http://www.sciencedirect.com/science/article/pii/S0749641909000357.
Leclerc, J., Nguyen, V.-D., Pardoen, T., Noels, L., A micromechanics-based non-local damage to crack transition framework for porous elastoplastic solids. Int J Plast 0749-6419, 127, 2020, 102631, 10.1016/j.ijplas.2019.11.010 URL http://www.sciencedirect.com/science/article/pii/S0749641919303821.
De Borst, R., Sluys, L., Muhlhaus, H.-B., Pamin, J., Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10:2 (1993), 99–121.
Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P., Gradient enhanced damage for quasi-brittle materials. Internat J Numer Methods Engrg 00295981, 39(19), 1996, 3391–3403 URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0030267284&partnerID=tZOtx3y1.
Håkansson, P., Wallin, M., Ristinmaa, M., Thermomechanical response of non-local porous material. Int J Plast 0749-6419, 22(11), 2006, 2066–2090, 10.1016/j.ijplas.2005.08.003 Damage and Fracture: Modeling and Experiments. URL http://www.sciencedirect.com/science/article/pii/S0749641906000623.
Reusch, F., Hortig, C., Svendsen, B., Nonlocal modeling and simulation of ductile damage and failure in metal matrix composites. J Eng Mater Technol, 130(2), 2008, 021009.
Hütter, G., Linse, T., Roth, S., Mühlich, U., Kuna, M., A modeling approach for the complete ductile–brittle transition region: cohesive zone in combination with a non-local gurson-model. Int J Fract 185:1 (2014), 129–153, 10.1007/s10704-013-9914-4.
Leclerc, J., Marteleur, M., Colla, M.-S., Pardoen, T., Noels, L., Nguyen, V.-D., Ductile fracture of high strength steels with morphological anisotropy. part II: Nonlocal micromechanics-based modeling. Eng Fract Mech, 2021 Under Revision.
Dæhli, L.E., Morin, D., Børvik, T., Hopperstad, O.S., A lode-dependent gurson model motivated by unit cell analyses. Eng Fract Mech 0013-7944, 190, 2018, 299–318, 10.1016/j.engfracmech.2017.12.023 URL http://www.sciencedirect.com/science/article/pii/S0013794417306872.
Hannard, F., Pardoen, T., Maire, E., Le Bourlot, C., Mokso, R., Simar, A., Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloys. Acta Mater 13596454, 103, 2016, 558–572, 10.1016/j.actamat.2015.10.008 URL https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094.
Bai, Y., Effect of loading history on necking and fracture. (PhD.), 2007, Massachusetts Institute of Technology, Cambridge, USA.
Eterovic, A.L., Bathe, K.-J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Internat J Numer Methods Engrg 30:6 (1990), 1099–1114, 10.1002/nme.1620300602 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620300602.
Gurtin, M.E., Anand, L., The decomposition f=fefp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int J Plast 0749-6419, 21(9), 2005, 1686–1719, 10.1016/j.ijplas.2004.11.007 URL http://www.sciencedirect.com/science/article/pii/S0749641904001603.
Cuitino, A., Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng Comput, 9, 1992, 437.
Xue, Z., Pontin, M., Zok, F., Hutchinson, J., Calibration procedures for a computational model of ductile fracture. Eng Fract Mech 0013-7944, 77(3), 2010, 492–509, 10.1016/j.engfracmech.2009.10.007 URL http://www.sciencedirect.com/science/article/pii/S0013794409003233.
Dunand, M., Mohr, D., On the predictive capabilities of the shear modified gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and lode angles. J Mech Phys Solids 0022-5096, 59(7), 2011, 1374–1394, 10.1016/j.jmps.2011.04.006 URL http://www.sciencedirect.com/science/article/pii/S0022509611000688.
Lassance, D., Fabregue, D., Delannay, F., Pardoen, T., Micromechanics of room and high temperature fracture in 6xxx Al alloys. Prog Mater Sci 00796425, 52(1), 2007, 62–129, 10.1016/j.pmatsci.2006.06.001 URL https://linkinghub.elsevier.com/retrieve/pii/S0079642506000399.
Pardoen, T., Delannay, F., Assessment of void growth models from porosity measurements in cold-drawn copper bars. Metall Mater Trans A 29:7 (1998), 1895–1909, 10.1007/s11661-998-0014-4.