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Abstract

The ductile fracture behavior of a high strength steel is investigated using a micromechanics-
based approach with the objective to build a predictive framework for the fracture strain and
crack propagation under different loading conditions. Part I of this study describes the ex-
perimental results and the determination of the elastoplastic behavior and damage nucleation
under different stress triaxiality and Lode parameter. The damage mechanism starts early
void nucleation from elongated inclusions, either by particle cracking under loading oriented
along the major axis, or by matrix decohesion when the main loading is transverse. Void
nucleation is followed by plastic growth and coalescence. The long inclusion axis is preferen-
tially aligned in one direction leading to significant failure anisotropy with the fracture strain
in the transverse direction being almost 50% lower compared to the longitudinal one, even
though the plastic behavior is isotropic. The experimental data are first used to calibrate
the elastoplastic model. An enhanced anisotropic nucleation model is then developed and
integrated into the Gurson-Tvergaard-Needleman scheme. The parameters identification of
the anisotropic nucleation model is finally performed and validated towards the experimen-
tal results. All these elements are subsequently used in Part II to simulate the full failure
behavior of all testing specimens in the entire spectrum of stress states, from nucleation to
final failure.
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1. Introduction

Ductile fracture is the ubiquitous failure scenario occurring in metallic materials. It
has been extensively addressed not only by experiments but also by theoretical studies, see
the reviews in [1, 2, 3] and references therein. This fracture process occurs in multiple
steps involving the nucleation, growth, and coalescence of voids, together with extensive
plastic dissipation before final failure. Under macroscopic loading conditions, the fracture
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process starts when micro-cavities nucleate from cracking and/or debonding of the inclusions
embedded in the metallic matrix. These micro-cavities grow and change shape through plastic
deformation. Finally, in the last stage, the voids coalesce, resulting in cracking initiation
followed by crack tearing.

In metallic alloys, there are four main sources of voids. First, cavities may pre-exist from
manufacturing, leading to an initial porosity noted fV 0. In many commercial metals, fV 0

is very small. The two main origins of voids are related to the presence of second phase
particles. Voids can nucleate by either particle fracture or particle decohesion. These two
mechanisms have been widely investigated, see reviews [4, 5, 6, 7, 3]. Void nucleation can
occur early in the deformation process during the elastic loading or after minute amounts of
plasticity, or sometimes only at very large deformation. Usually, small particles, typically in
the submicrometer range, involving statistically less and smaller internal and interface defects,
exhibit late nucleation, while large brittle particles often lead to early void nucleation. The
void nucleation mode depends on the shape of the particles as well. Elongated particle tend
to fragment when loaded parallel to the main loading axis, while showing decohesion when
loaded transversally. The mode of nucleation depends also on the hardening law of the matrix,
e.g. [8]. Void nucleation has been treated using phenomenological models relating the void
nucleation rate ḟV nu (i.e. rate of void volume fraction production through nucleation) to
the overall equivalent plastic strain rate or to the overall equivalent and hydrostatic stress
rates. These laws, as formulated by Chu and Needleman [9], take into account a spread
of the void nucleation events over the loading through a Gaussian distribution, allowing a
maximum porosity fn to be nucleated. The maximum porosity fn is directly connected to the
volume fraction of particles, with some complications arising in the case of particle fracture
due to the original penny shape of the voids, e.g. [10, 11]. Other models directly relate the
nucleation condition to the local stress and strain inside and at the interface of the particle
and involve the famous work by the Beremin group [12], relying on homogenization theory.
As a fourth source of voids, cavities can nucleate by accumulation of dislocations in some
specific systems (e.g. in some hexagonal metals) or by accumulation of vacancies, favored for
instance by irradiation and/or heating.

The mechanism void growth and coalescence are highly dependent on the stress state
through the stress triaxiality, i.e. ratio of the hydrostatic pressure over the von Mises equiv-
alent stress, and through the Lode parameter, which relates to the third invariant of the
deviatoric stress tensor, as demonstrated through numerous researches in the literature, see
e.g. the works [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. A high stress triaxiality leads
to large void growth rates and fracture occurs mainly by internal necking of the ligaments
between neighboring voids. At lower stress triaxiality, the voids tend to elongate and rotate
while the porosity increases more slowly with plastic deformation. The Lode parameter plays
an important role, and the fracture occurs sometimes with the formation of micro shear bands
inclined to the main loading direction and joining primary voids, possibly with secondary
voids nucleating inside these micro bands (“coalescence” in shear also called “void sheeting”).
In the former case, the ductile fracture process is mainly governed by the stress triaxiality
and the effect of the Lode parameter can be neglected whereas both the stress triaxiality and
the Lode parameter considerably affect the latter [3]. The shear coalescence mechanism often
leads to a slant crack propagation mode. Since metallic structures in engineering applications
generally undergo complex stress states, a proper account of the stress state on the ductile
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fracture process is mandatory for structural design, which in turn, constrains the material
processing and development.

A large number of predictive computational models has been developed in the literature
to combine an elastoplastic constitutive description of the metallic matrix with the evolution
of the embedded voids. Probably the most common model is the Gurson model [25] in which
a volume fraction of spherical voids is taken into account in the macroscopic yield criterion.
This original model can only predict the void growth phase. It was subsequently extended
in a semi-phenomenological form by Tvergaard and Needleman [26, 27], the so-called the
GTN model, in order to take into account the void nucleation and void coalescence phases.
The limitation of the GTN model in predicting failure under low stress triaxiality was partly
resolved by introducing void shape effects [28, 29, 30] and partly, in [16], by incorporating
a Lode-dependent heuristic term in the void evolution. Many other extensions of the GTN
model have been proposed as reviewed in [1, 2, 3] and summarized hereafter for the one
specifically used in the present study.

Although the GTN model and its extensions provide a complete computational method-
ology for the ductile fracture process, its description of the void nucleation process remains
relatively empirical, missing a more in depth analysis of the phenomena at the inclusion level.
An attempt is made in the present study to use a micromechanics-based model derived from
the Beremin criterion [12], in which nucleation of voids starts when the critical stress at the
inclusions is attained.

Furthermore, the phenomenological description of void coalescence, in which the porosity
growth rate is artificially accelerated beyond a critical value of the porosity corresponding
to the onset of coalescence, does not provide a realistic description of the void coalescence
mechanism [13]. To better represent the coalescence process, micromechanics-based coales-
cence models pioneered in [31, 32] and further extended, see e.g the works [13, 33, 34, 35],
the so-called Thomason model, have been addressed under the argument that coalescence
corresponds to a localized plastic deformation in the ligaments between neighboring voids.
The Thomason model can be used either to detect the onset of void coalescence while using
the GTN framework [36], or as an additional yield surface competing with the GTN yield
locus to govern the coalescence process (the so-called GTN/Thomason model) [13, 37, 38, 39].
The Thomason model is also used to govern the void coalescence process in the context of
the multi-surface model [24].

Whenever the material degradation is modeled using a local constitutive model, the re-
lated boundary value problem becomes ill-posed during the material softening and the finite
element solution becomes mesh-dependent [40]. This issue can be resolved using the implicit
gradient enhanced nonlocal model pioneered in [41], see e.g. [42, 43, 44] when using the GTN
model alone or [39, 24] when coupling the GTN and the Thomason models. Alongside the
coupled GTN/Thomason model, the damage-to-crack transition framework is considered in
[39], in which the crack surfaces are introduced in the mechanical problem through a cohesive
band model during void coalescence.

Although ductile fracture of metals is an old field of research which may seem now ma-
ture, the number of studies combining advanced micromechanical models with enhanced void
coalescence models expressed within a rigorous nonlocal formulation and well validated nu-
cleation laws, and relying on a wide experimental basis are rarely found in recent literature.

The aim of this work is to apply the approach on a high-strength steel showing significant
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morphological anisotropy under different stress states and loading directions through exper-
imental and numerical analyses. The GTN/Thomason model under finite strains coupled
with the implicit gradient enhanced nonlocal model and with the damage-to-crack transition
framework recently developed in [39] is considered and validated using experimental results.
The research is divided into two parts:

• In Part I, the experimental study based on a wide range of monotonic tensile tests
under different stress states combined with microstructure and damage characterization
is presented. The focus is on the identification of the elastoplastic behavior and on the
stress triaxiality and the Lode effects on the void nucleation and fracture mechanisms.
A new micromechanics-based void nucleation law enhancing the Beremin model [12]
is then developed to capture the failure anisotropy emerging from the void nucleation
process. Since the parameters identification of the nucleation law relies only on the
microstructure characterization and on the void nucleation stage at low strains, we are
already borrowing from Part II the calibrated version of the GTN model to validate
this part of the work.

• In Part II [45], the calibration of the remaining parameters of the coupled GTN/Thomason
model is investigated using void cell simulations and experimental results from Part I.
Once all constitutive parameters are available, all the tests are simulated in order to
assess the validity of the model. The damage-to-crack transition framework [39] is then
applied to model the full crack propagation process.

Part I is organized as follows. The conducted experimental campaign is described in Sec-
tion 2 and its results are analyzed in Section 3. The tensile tests are performed with different
specimen types including smooth and notched round bars, plane strain specimens, and plane
stress specimens in order to cover a wide range of stress triaxiality and Lode parameter. The
cylindrical round bars are extracted from a large piece in the different directions to address
the material anisotropy. In Section 4, the elastoplastic material parameters are identified
and numerical simulations are performed to estimate the effect of the stress state on the
fracture strain. In Section 5, an anisotropic void nucleation model is derived from reference
[12] and integrated into the GTN model. The parameters identification of this anisotropic
void nucleation model is performed and the numerical simulations show that the model can
capture the effect of morphological anisotropy on damage evolution.

2. Experimental procedures

2.1. Material

The high strength steel (HSS) was received as hot forged hollow cylindrical pieces, see
Fig. 1. These cylinders were water quenched after hot forging. Microstructural analysis of
samples taken at various locations in the cylinders did not show heterogeneities along the
thickness length. Figures 2a and 2b show scanning electron microscopy (SEM) images of
the microstructure respectively perpendicular to the axis of the cylinder and to the radial
direction. Black elongated precipitates are observed along the z− r plane, showing a circular
section in the r − θ plane. These precipitates are identified as MnS inclusions as commonly
observed in industrial steels. The length of the inclusions ranges from a few up to 100
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µm, with a mean diameter of 2 µm. A particle volume fraction of 2 × 10−3 is estimated
from the surface fraction. Inserts in Figs. 2a and 2b highlight a martensitic microstructure
after etching in Nital. XRD analysis showed no trace of residual austenite, as well as no
crystallographic texture in the cylinders.

  

Figure 1: Schematic representation of the inclusion populations in the HSS material. Elongated inclusions
aligned along the tube axis correspond to MnS precipitates and second family consists of small spherical
carbide particles.

High magnification characterization of the microstructure highlights the presence of nu-
merous carbides homogeneously dispersed inside the martensitic matrix, as illustrated in Fig.
2c. Their mean diameter is equal to 60± 20nm and the volume fraction is about 7%.

Figure 1 is a schematic representation of the inclusion population in the HSS. The first
population consists of large elongated inclusions aligned along the tube axis corresponding
to MnS precipitates and the second population consists of small spherical carbide particles.
In addition, the longitudinal and transverse directions are designated to refer respectively to
the tube axis and circumferential directions.

2.2. Mechanical tests

All samples were cut by electric discharge machining (EDM) in order to avoid local
heating and/or hardening of the material. The various geometries have been chosen in order
to assess the influence of the loading conditions and directions on the failure of the material.
The specimens were extracted from a forged tube, see Fig. 1 along both the longitudinal and
transverse directions.

Three different types of geometry are tested including cylindrical round bars (denomi-
nated by RB), plane strain specimens (denominated by PE) and plane stress plate specimens
(denominated by PS) as sketched in Fig. 3. For RB and PS geometries, tensile tests are per-
formed on both smooth and notched specimens while only notched specimens are considered
for the PE geometry.

The specimens undergo different stress states. Given the Cauchy stress tensor σ with
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(a) (b)

(c)

Figure 2: SEM micrographs of the initial microstructure of the investigated HSS: (a) perpendicular to the
longitudinal direction, (b) perpendicular to the radial direction, inserts show the martensitic microstructure
after etching, and (c) a higher magnification shows the carbides population dispersed in the martensitic
matrix.

eigenvalues σ1 ≥ σ2 ≥ σ3, the three invariants can be expressed as

p′ =
tr (σ)

3
=
σ1 + σ2 + σ3

3
, (1)

σeq =

√
3

2
dev (σ) : dev (σ) =

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2
, and

J3 = det dev (σ) = (σ1 − p′) (σ2 − p′) (σ3 − p′) ,

where tr (•) and dev (•) are respectively the trace and deviatoric operators, and p′ and σeq

are known, respectively, as the hydrostatic stress and von Mises equivalent stress. The
stress triaxiality (denoted by T ) and the Lode parameter1 (denoted by ζ) are defined as

1There exist different ways to define a parameter characterizing the Lode effect [46]: (i) ζ whose
definition is given by Eq. (2), (ii) θ = arccos (ζ) /3 which is known as the Lode angle, and (iii)
L = (2σ2 − σ1 − σ3) / (σ1 − σ3) =

√
3 tan (θ − π/6). Without loss of generality, ζ is referred to as the

Lode parameter in this work to quantify the Lode effect.
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(a) Round bars specimens

(b) Plane strain specimen,

(c) Plane stress specimen

Figure 3: Sample geometries used in this study: (a) round bar (RB) specimens with R0=3 mm, (b) plane
strain (PE) specimens with t0=2 mm, and (c) plane stress (PS) specimens with W0=7 mm.

dimensionless quantities from these three stress invariants as

T =
p′

σeq

and ζ =
27J3

2σ3
eq

, (2)

with −∞ < T < +∞ and −1 ≤ ζ ≤ 1. While T quantifies the magnitude of the hydrostatic
contribution, ζ indicates the loading mode. It can be shown that ζ = 1 corresponds to an
axisymmetric tension, ζ = 0 corresponds to plane strain and general shear loading condi-
tions, and ζ = −1 corresponds to an axisymmetric compression. The pair of dimensionless
parameters (T, ζ) is generally used to characterize the stress state.

For RB specimens, the loading conditions at the center of the notched section are T ≥ 1/3
and ζ = 1. For PE specimens, one has T ≥ 1/

√
3 and ζ = 0 as a result of the plane strain

condition. The design of the PS specimens is expected to result Lode parameter values in the
range [0 1] while the range of stress triaxiality is the same as in the RB and PE specimens.

The presence of the notch (in the RB, PE, and PS specimens shown in Fig. 3) is charac-
terized by the shape factor, denoted by γ and defined as

γ =
a0

Rn

, (3)

7



where Rn is the notch radius and a0 is defined based on the specimen type: (i) for RB
specimens, a0 = R0 where R0 is the initial radius at the notched section, (ii) for PE specimens,
a0 = t0/2 where t0 is the initial in-plane thickness at notched section, and (iii) for PS
specimens, a0 = W0/2 where W0 is the initial width at the notched section. For smooth
specimens, γ = 0 since Rn → ∞. The level of the stress triaxiality at the center of the
notched section increases with the shape factor γ [15, 19, 21].

Table 1: Sample names with their key parameters

Type Test Direction γ T ∗ ζ∗

Smooth round bars SRB L, T 0 ≥ 1/3 1
Notched round bars NRB-1 L, T 0.75 > 1/3 1
Notched round bars NRB-2 L, T 1.5 > 1/3 1
Notched round bars NRB-3 L, T 2 > 1/3 1
Notched round bars NRB-4 L 3 > 1/3 1

Notched plane strain NPE-1 L 0.1 > 1/
√

3 0

Notched plane strain NPE-2 L 1/3 > 1/
√

3 0

Notched plane strain NPE-3 L 1 > 1/
√

3 0
Smooth plane stress SPS L 0 ≥ 1/3 [0 1]
Notched plane stress NPS-1 L 0.75 > 1/3 [0 1]
Notched plane stress NPS-2 L 1.5 > 1/3 [0 1]
Notched plane stress NPS-3 L 2.9 > 1/3 [0 1]

∗ The exact values of the stress triaxiality T and of the Lode parameter ζ at failure at the notched section
will be estimated in Section 4.

Different values of the shape factor are considered for each specimen type (including RB,
PE, and PS specimens) which allows studying the dependencies of the fracture strain on the
stress triaxiality and Lode parameter. The labeling of each specimen is summarized in Table
1. A prefix S is used for the smooth (unnotched) specimens and a prefix N for the notched
ones. The RB specimens are extracted in both longitudinal direction (notation prefixed by L)
and transverse direction (notation prefixed by T). Since other specimens are extracted only
following the longitudinal direction due to geometrical constrains, their prefix L- is omitted
for conciseness.

2.3. Damage characterization methods

The porosity distribution, on both the L-SRB and T-SRB specimens loaded up to frac-
ture, is measured along their axisymmetric axis following the approach employed in [47].
The specimens were first cut following their axis, then micrographs of the microstructure
were taken with the electronic microscope (SEM) from the failure surface along the complete
necking distance, see Fig. 4. From these micrographic images, the density of cavities along
the axisymmetric axis can be extracted by observation. Since the plastic deformation, which
is large close to the crack surface and decreases when the distance from the crack surface
increases, can be quantified in terms of the distance from the crack using a validated nu-
merical simulation, a continuous nucleation law can be identified in function of the plastic
deformation, see Section 5.
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Figure 4: Rectangular region used for the measurement of the porosity after the final failure of the SRB
specimen.

3. Experimental results

3.1. Mechanical tests

3.1.1. Tensile tests on RB specimens

For each test performed on RB specimens, see Fig. 3a, several (typically 3 repetitions)
specimens were considered to assess the variability in the mechanical response. The specimens
were loaded using a displacement control at constant speed equal to 1mm/min. All tests were
conducted until final fracture. For the SRB specimens, the extensometer is used to measure
the elongation ∆L over a reference gauge length L0 = 30mm, from which the engineering
strain is estimated as ∆L/L0. For the NRB-1, NRB-2, NRB-3, and NRB-4 specimens, a
strictometer is used to measure the reduction of radius ∆R at the minimum notched section
whose initial radius is R0. The engineering stress is evaluated by F/S0 where F is the axial
tensile force and S0 = πR2

0 is the initial smallest cross-section area of the specimen2. A stress
triaxiality T ≥ 1/3 is expected for these tests while the Lode parameter ζ is equal to 1 at
the ligament center.

Figure 5a shows the engineering curves obtained on the L-SRB and T-SRB specimens.
Prior to the onset of fracture defined by the point at which the stress value suddenly drops,
the two curves are close to one another. This agrees with the observations in Section 2.1
reporting no crystallographic anisotropy between the longitudinal and transverse directions.
However, a significant anisotropy on the fracture strain is observed: fracture occurs earlier in
the transverse direction. This anisotropy results from the distribution of the elongated MnS
inclusions, for which larger voids nucleate and grow faster when the structure is loaded in the
transverse direction. A micro-mechanics based explanation of these mechanisms is provided
in Section 3.2.

Figure 5b shows typical engineering curves obtained from the tensile tests on the L-NSB
specimens. It can be seen that a smaller notch radius (characterized by a larger shape factor

2For confidentiality reasons, the experimental results are provided using normalized values of the axial
force with respect to a reference value.
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Figure 5: RB specimens: (a) typical experimental curves of the normalized engineering stress in terms of
the relative elongation ∆L/L0 for the L-SRB and T-SRB specimens, (b) typical experimental curves of the
normalized engineering stress in terms of the relative radius reduction −∆R/R0 for the L-NRB specimens,
and (c) fracture strain in terms of the shape factor. Only a typical curve among the available experimental
results of each geometry is shown.

γ) results in an increase of the stress levels and in earlier failure as a result of a higher stress
triaxiality.

The fracture strain defined as the mean equivalent plastic strain of the matrix at the onset
of failure is widely used to quantify the material ductility. With the axisymmetric (both SRB
and NRB) specimens, the fracture strain is estimated from the reduction of the cross-section
area [48] as

ε̄f = 2 ln
R0

Rf

, (4)

where R0 is either the initial radius of the SRB specimens or the radius at the notched section
of the NRB specimens, and Rf is its value at fracture. This ε̄f is a mean value at the level
of the cross-section and not exactly the very local value at the first point of cracking. The
value of Rf of each specimen is measured after fracture instead of using the strictometer to
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get the best accuracy, so that the fracture strain is not estimated directly from Fig. 5b. The
dependence of the fracture strain on the shape factor in these tests is shown in Fig. 5c: the
fracture strain decreases with increasing stress triaxiality. Furthermore, the fracture strain
in the transverse specimens is almost 50 % lower than in the longitudinal ones under the
same loading conditions.

Figures 6a-6c show fracture surfaces of the L-SRB and Figs. 6d-6e of the T-SRB speci-
mens. The well-known cup-cone failure profile is clearly visible. In both cases, the fracture
surface consists of a flat part with a rough appearance due to the micro-voids at the center
and a less rough slant part near the free surface. The slant part, inclined at 45o compared
to the loading direction, corresponds to the zone of failure induced by shear localization and
exhibits a different surface aspect. When loaded along the transverse direction, as shown
in Fig. 6e, the central part seems fibrous, this pattern being dictated by the prolate MnS
inclusions loaded perpendicularly. Smaller voids nucleated around the carbide inclusions are
also observed.

The typical cup-cone failure profile is very clear with the L-NRB (-1, -2, and -4) specimens
as shown in Figs. 7. Micrometer-sized dimples are the remnants of the voids formed around
MnS particles which coalesced together by tensile internal necking during the last steps of
the failure process. At the bottom of the dimples, a segment of the inclusion is sometimes
still visible (see e.g. Fig. 7e). Smaller nanometric dimples are the results of voids created
from carbides decohesion.

The fraction of the flat part of the total fracture surface of the RB specimens is reported
in Fig. 8. This fraction depends not only on the shape factor of the specimens but also on
the direction from which the specimens are extracted. The dependence on the shape factor
is more pronounced for the L-RB specimens than for the T-RB specimens.

3.1.2. Tensile tests on PE specimens

The PE specimens, see Fig. 3b, were loaded under displacement control at constant speed
equal to 1mm/min. All the tests were conducted until final fracture. The extensometer is
used to measure the elongation ∆L over a reference gauge length L0 = 18mm, from which
the engineering strain is estimated as ∆L/L0. A strictometer is also used to measure the
thickness reduction ∆t in the notched section. The engineering stress is estimated by F/S0

where F is the axial tensile force and S0 is the initial minimum cross-section area of the
specimen.

The force evolution is represented in Fig. 9a as a function of the engineering strain.
Reducing the notch radius induces a higher apparent elastic stiffness and a higher level of
tensile stress due to a higher stress triaxiality in the centre of the specimen.

For this geometry, the equivalent fracture strain can be estimated by [48]

ε̄f =
2√
3

ln
t0
tf
, (5)

where t0 is the initial in-plane thickness at notched section and tf is the in-plane thickness at
fracture. The value of tf of each specimen is measured once final failure occurs. The experi-
mental measurements are gathered in Fig. 9c in terms of the shape factor. As expected, the
ductility decreases with decreasing notch radius. However, the fracture strain is smaller com-
pared to the axisymmetric cases with the main axis in the longitudinal direction as reported
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Figure 6: SRB specimens - micrographs of the fracture surface: (a - c) for a L-SRB specimen, and (d, e) for
a T-SRB specimen.
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Figure 7: RB specimens - micrographs of the L-NRB specimens: (a-c) fracture surface for the different notch
radii, and (d-f) zoom on the central part.
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Figure 8: RB specimens: variation of the fraction of the flat part of the fracture surface as a function of the
notch shape factor for the two orientations L and T.
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Figure 9: PE and PS specimens: (a) normalized engineering stress as a function of the engineering strain
∆L/L0 of the PE specimens, (b) normalized engineering stress versus the engineering strain ∆W/W0 of the
PS specimens, and (c) fracture strain in terms of the notch shape factor. Only one typical curve among the
available experimental results of each geometry is shown in (a) and (b).
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in Fig. 5c, which can be explained by the additional Lode-induced damage contribution
resulting from the plane strain condition.

Figure 10 shows the fracture surfaces corresponding to the PE specimens exhibiting a
slant fracture mode for the three groove radii. The fracture surface is characteristic of a
macroscopic shear failure mode along the sides with flat voids and an intervoid necking void
coalescence process in the center. The latter is more visible on the NPE-3 specimen for which
the stress triaxiality is the highest.

3.1.3. Tensile tests on PS specimens

For each test on the PS specimens, see Fig. 3c, several repetitions were considered to
assess the material and test variability. The specimens were loaded under a displacement
control at constant speed equal to 1mm/min. All the tests were conducted until final fracture
of the specimens. A strictometer was used to measure the width reduction ∆W at the notched
section whose initial width is W0. The engineering stress is estimated by F/S0 where F is
the axial tensile force and S0 is the initial cross-section area.

The evolution of the tensile force in terms of the relative width reduction ∆W/W0 is
shown in Fig. 9b. A reduction of the notch radius results in an increase of the applied tensile
stress. The notch size affects both the triaxiality and the Lode parameter whose value is not
a constant as in the RB and PE specimens.

Based on the rough assumption that the minimum cross-section at fracture remains rect-
angular, the fracture strain for this geometry can be approximated by

ε̄f =
2√
3

√
ln2 W0

Wf

+ ln2 t0
tf

+ ln
W0

Wf

ln
t0
tf
, (6)

where W0 and Wf are respectively the initial specimen width at the notch level and the width
at fracture, and where t0 and tf are respectively the initial thickness at the notch and the
thickness at fracture. The values of W0, Wf, t0, and tf are directly measured on the test
specimens. The obtained results are shown in Fig. 9c. The fracture strain decreases with a
decreasing notch radius.

3.2. Damage characterization

Typical micrographs with voids are shown in Figs. 11a-11d and Figs. 11e-11f for respec-
tively an L-SRB specimen and a T-SRB specimen. The damage originates early in the process
by particle cracking or matrix/particle decohesion, respectively for the L- and T-specimens.
Higher magnification observations below the fracture surface in Fig. 11b highlight the decohe-
sion between matrix and secondary carbides population. However, these events are observed
at larger plastic strains and just below the fracture surface only.

As shown in Section 3.1, the fracture strain is highly anisotropic. One source of anisotropy
originates from the porosity nucleation triggered by the fracture of the elongated MnS in-
clusion: when loaded along the main particle axis, the MnS inclusions nucleate by particle
cracking, while, when loaded in the perpendicular direction, the porosity arises from the ma-
trix/particle decohesion, as illustrated in Fig. 12. In both cases, void nucleation occurs early
in the loading process but the voids nucleate differently depending on the loading direction,
a phenomenon known in the literature for a long time [6].
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Figure 10: PE specimens - micrographs: (a-c) fracture surface for the different notch radii, and (d-f) zoom
on the central part.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Examples of micrographs obtained at different distances from the crack surface - L-SRB specimen
(a-d): (a) just below the fracture surface, (b) high magnification of the damaged microstructure below the
fracture surface, (c) example of void coalescence below the crack surface, and (d) at initiation of necking -
T-SRB specimen (e, f): (e) just below the crack surface and (f) at the middle of the necking zone.
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(a) L-specimen (b) T-specimen

Figure 12: Illustration of the porosity nucleation triggered by the fracture of the elongated MnS inclusion,
zooms from Fig. 11 and schematic representation: (a) nucleation by particle cracking when loaded along the
main particle axis, and (b) nucleation by matrix/particle decohesion when loaded in the transverse direction.
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Figure 13: Experimental measurements of the different porosity populations (MnS and carbides) in terms of
the distance to the fracture surface on: (a) a L-SRB specimen, and (b) two T-SRB specimens (denoted by
A and B).
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After image processing, the surface fraction of the MnS inclusions and of their associated
surrounding cavity is computed. The porosity is then deduced by assuming that the surface
fraction is equal to the volumetric fraction, which is the case for random distributed voids.
The porosity is then plotted as a function of the distance from the fracture surface in Fig.
13 for both void populations.

4. Elastoplastic behavior

4.1. Hyperelastic-based elastoplastic model

The material model at finite strains is specified as the evolution of the first Piola-Kirchhoff
stress tensor (denoted by P) in terms of the deformation gradient (denoted by F) and a set
of internal variables (denoted by Z) introduced to capture the history and path dependencies
as

P = P (F,Z) , and evolution laws for Z . (7)

For elasto-plastic materials, a multiplicative decomposition of the deformation gradient is
supposed as

F = Fe · Fp , (8)

where Fe is its elastic part and Fp is its plastic part. The elastic behavior is based on a
hyperelastic formulation, in which an elastic potential is given by

ψ =
K

2
(ln Je)2 +

G

4
dev (ln Ce) : dev (ln Ce) , (9)

where Ce is the elastic right Cauchy strain tensor, dev (A) represents the deviatoric part of
an arbitrary second order tensor A, Je = det Fe > 0 is the elastic Jacobian, and K and G are
respectively the bulk and shear moduli of the material. The first Piola-Kirchhoff stress tensor
P is estimated from the hyperelastic potential (9) under a purely elastic state (constant Fp)
as

P =
∂ψ

∂F
= KF−T ln Je + Fe ·

[
GCe−1 · dev (ln Ce)

]
· Fp−T . (10)

In terms of the elastic logarithmic strain measure, defined as Ee = 1
2

ln Ce, Eq. (9) allows
defining the logarithmic stress measure τ , which is energetically conjugate to Ee as

τ =
∂ψ

∂Ee
= Ktr (Ee) I + 2Gdev (Ee) , (11)

where tr (A) represents the trace of an arbitrary second order tensor A. One can demonstrate
that τ is interpreted as the Kirchhoff stress represented in the elastic corotational space [49].
This stress measure relates to the first Piola-Kirchhoff stress tensor P as a results of Eqs.
(10, 11) by the following relation

τ = FeT ·P · FpT . (12)
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According to the J2-elastoplasticity theory, the von Mises stress criterion reads

Φ =
τeq

τy (εm)
− 1 ≤ 0 , (13)

where Φ is the yield function, τeq =
√

3
2
dev (τ ) : dev (τ ) is the von Mises equivalent stress,

τy is the yield stress that is function of the equivalent plastic strain εm. The plastic problem
is completed by defining an associative and irrotational plastic flow [50] as

Dp = Ḟp · Fp−1 = Λ̇
∂Φ

∂τ
, (14)

where Dp is the plastic strain rate, and Λ is the plastic multiplier. The evolution of the
equivalent plastic strain εm is given by

ε̇m =

√
2

3
Dp : Dp . (15)

The numerical integration of the plastic problem follows a predictor-corrector scheme as
described in [51]. The parameters of the elastoplastic model consist of the elastic parameters
K and G in Eq. (9) and of the hardening law parameters specifying the relation τy (εm) in
Eq. (13).

4.2. Identification of elastoplastic parameters

Prior to necking, the hardening law specifying the function τy (εm) can be directly identi-
fied from the experimental stress-strain curves (see Fig. 5a) using a linear function followed
by a power law. During necking, an identification method requiring several iterations has
been followed with the goal to match the engineering stress-strain curves obtained by the
finite element simulation and by the experimental tests. The hardening law is chosen as

τy (εm) =



τ 0
y + hεm if εm ≤ p1

τy1

(
εm

p1

)n1

if p1 < εm ≤ p2

τy2

(
εm

p2

)n2

if εm > p2

, (16)

where h, p1, p2, n1, and n2 are the material parameters, and where τy1 = τ 0
y + hp1 and τy2 =

τy1

(
p2
p1

)n1

. The values of τ 0
y , h, p1, and n1 can be directly derived from the experimental data

prior to necking, since the plastic state within the gauge length is uniform, while the values
of p2 and n2 are obtained by curve fitting the engineering stress-strain response obtained by
the finite element simulation during necking to the experimental curve.

The finite element meshes used in the elastoplastic simulations are shown in Fig. 14.
The RB specimens are modeled with axisymmetric finite elements using 6-node triangular
elements. Only the central part of the full specimens is represented, see e.g. Figs. 14a and
14b for the cases of SRB and NRB-4 specimens. Plane strain 6-node triangular elements
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(a) SRB (left) and
zoom at the center (right)

(b) NRB-4 (left) and
zoom at the center (right)

(c) NPE-1 (left) and
zoom at the center (right)

(d) SPS (e) NPS-3

Figure 14: Finite element meshes considered in the elastoplastic simulations: (a) SRB specimen, (b) NRB-4
specimen, (c) NPE-1 specimen, (d) SPS specimen, and (e) NSP-3 specimen.
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Table 2: Material properties for the J2 elastoplastic law.

K [GPa], G [GPa] Elastic moduli (see Eq. (9))
τ 0

y [MPa] Initial yield stress

p1 [-], n1 [-], p2 [-], n2 [-] Hardening law parameters (see Eq. (16))

are used to model the tests on PE specimens, see e.g. Fig. 14c for the NPE-1 specimen.
Besides, because of tolerance issue during the tooling process, the thickness outside of the
grooves has been corrected to fit the elastic slope of the experimental tests. The PS speci-
mens need 3-dimensional finite element simulations in which the 10-node tetra elements are
used, see e.g. Figs. 14d and 14e for the cases of SPS and NPS-3 specimens, in which only
half of specimen is meshed because of the geometry and the loading symmetries. All the
meshes are refined within the necking or notched regions in order to capture the large local
stress and strain gradients. Mesh size sensitivity analyses were systematically performed to
ensure a sufficient refinement to produce converged results within the studied range. The
symmetry/axisymmetry of the geometry, load, and boundary conditions selected in reduced
finite element models affect the prediction of the post-coalescence response and material
separation. Indeed, the fracture pattern will be accordingly constrained with these symmet-
ric/axisymmetric assumptions. However, for the RB specimens, the micro-graphs in Figs. 6
and 7 show that the failure surfaces can be qualitatively considered as axisymmetric, which
motivates the use of the axisymmetric finite element model. For the PE specimens, the slant
failure patterns shown in Fig. 10 require considering a plane strain finite element discretiza-
tion of the full in-plane thickness of the specimen. For the PS specimens, only a symmetric
assumption on the width is considered, and the resulting three-dimensional finite element
model can capture the necking phase and can qualitatively reproduce the crack pattern since
the latter is normal to the loading direction at the specimens center before exhibiting shear
lips at the surface for the smooth ones. Despite of these simplifications, the reduced fi-
nite element models drastically decrease the computation time and resources while providing
accurate results prior to the onset of fracture.

An average response evaluated from the experimental results on the L-SRB specimens
depicted in Fig. 5a is used to conduct the identification of the elastoplastic parameters
summarized in Tab. 2. Figure 15a shows, in terms of the stress-strain response, the compar-
ison between the average experimental response obtained for the L-SRB specimens with the
numerical simulation after identification. The average result corresponding to the T-SRB
specimen is also reported, showing a good agreement and confirming the absence of plastic
anisotropy.

In order to further validate the identified parameters of the elastoplastic material model,
the other specimen geometries tested experimentally in Section 2 are also simulated. For the
different NRB specimen geometries, the average engineering stress-strain curves generated
from several test specimens of the same geometry is compared to the numerical predictions in
Fig. 15b, showing a good agreement. Figures 15c and 15d respectively compare the specimen
simulations to their corresponding average experimental responses. On the one hand, the PS
specimens show less sensitivity to the notch radius than the RB and PE specimens. On the
other hand, the elastoplastic responses predictions of the PE and PS specimens, respectively
reported in Figs. 15c and 15d, are less accurate than the predictions for the NRB specimens
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Figure 15: Comparison of the numerical (elastoplastic model) and experimental stress-strain responses: (a)
SRB specimens, (b) NRB specimens, (c) PE specimens, and (d) PS specimens. The experimental curves
correspond to average responses obtained for different specimens with the same geometry and are truncated
once one of the specimen responses exhibits a sudden drop.
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shown in Fig. 15b. This can be explained by the Lode effect: the Lode parameter is different
for the different types of specimen while the elastoplastic constitutive law was calibrated
using only the SRB specimen, and thus considering a unique value of the Lode parameter.
A better agreement for the PE and PS specimens could have been obtained by considering a
plasticity model that includes a Lode effect [18].

4.3. Determination of local stress state in the crack initiation region

Figures 16a, 16b, and 16c show the evolution of the stress triaxiality in terms of the equiv-
alent plastic strain extracted from the finite element solution at the center of the minimum
section of all specimens. The experimental fracture point for all the tests is also indicated
based on the equivalent fracture strain at the onset of fracture. The stress triaxiality is not
constant during the loading but generally increases with plastic deformation. The presence
of a notch results in a strong change of the stress triaxiality at the initial stage of plas-
tic deformation followed by a more gradual change. On the contrary, the results on the
smooth specimens show a steady increase. Furthermore, modifying the notch radius in the
PS specimens results in smaller variation of the stress triaxiality value than for the two others
configurations. Hence, the range of stress triaxiality covered by the RB and PE specimens is
similar and is wider than in the case of the PS specimens.

Figure 16d shows the evolution of the Lode parameter in terms of the equivalent plastic
strain at the center of the notched section for the PS specimens only. The RB and PE
specimens are not shown as the Lode parameter is constant and equal to 1 for the former
and 0 for the latter. As shown in Fig. 16d, in each PS test, the Lode parameter is not
constant but globally decreases with plastic deformation. This impact is more pronounced
when the notch radius decreases. A higher notch radius (i.e. a smaller shape factor γ) leads
to a higher value of the Lode parameter for the same value of the equivalent plastic strain.
Moreover, the presence of a notch results in a strong change of the Lode parameter at the
initial stage of plastic deformation followed by a more gradual evolution, contrarily to the
SPS specimen.

4.4. Influence of the stress state on the fracture strain

Figures 17a and 17b gather the variation of the fracture strain as a function of (a) the
stress triaxiality, and (b) the Lode parameter. For the RB and PE specimens with a constant
Lode parameter, the fracture strain generally decreases when the stress triaxiality increases,
see Fig. 17a. Although the range of stress triaxiality in the RB and PE specimens is similar,
the Lode parameter is significantly different leading to different fracture strains. For the PS
specimens, both the stress triaxiality and the Lode parameter vary with the notch radius.
The fracture strain increases as the Lode parameter increases, see Fig. 17b, while the stress
triaxiality does not vary monotonically, see Fig. 17a.

The fracture strains estimated from the experimental tests following Eqs. (4, 5, 6),
and used to extract Figs. 17a and 17b are based on the area reduction at the notched
section after full fracture. This is the usual experimental definition of the true fracture
strain. They however do not correspond to the true local values of the equivalent plastic
strain at the onset of failure. The differences between the overall equivalent plastic strain
at fracture (averaged over the minimum cross-section) and the local equivalent plastic strain
at cracking initiation extracted from the finite element simulations can be analyzed in Fig.
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Figure 16: Variation of the predicted (elastoplastic model) stress triaxiality as a function of the equivalent
plastic strain at the center of the notched section: (a) RB specimens, (b) PE specimens, and (c, d) PS
specimens.
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Figure 17: Influence of the stress state on the cracking initiation: (a, b) “experimental” fracture strain, (c)
fracture strain estimated by Eqs. (4, 5, 6) from the experimental measurements versus the equivalent plastic
deformation extracted from the finite element simulations (elastoplastic model) at the onset of fracture, and
(d, e) equivalent plastic strain extracted at the onset of fracture at the necking section.
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17c. These differences are due to the fact that, on the one hand, the real distribution of the
plastic strain is not uniform, and on the other hand, the failure surface is not perfectly flat
leading to uncertainties in the determination of a true fracture area. Moreover, the inaccurate
predictions of the fracture strain for the PS specimens result from the assumption that the
failure surface remains rectangular. The failure locus depicted in Figs. 17a and 17b in terms
of the fracture strain can be reevaluated in terms of the local equivalent plastic strain, see
Figs. 17d and 17e with no change in the trend.

The experimental fracture strains defined by Eqs. (4, 5, 6) are all macroscopic quantities.
Although these macroscopic values are approximations of the stress and strain states of the
location and instant of cracking initiation in the minimum cross-section, they still provide
reasonable trends in terms of the impact of the stress triaxiality and of the Lode parameter
as shown in Figs. 17a and 17b.

5. Anisotropic void nucleation model and parameters identification

This section is devoted to an extension of the Beremin nucleation model [12] in the context
of the Gurson- Tvergaard- Needleman (GTN) model [25, 26, 27]. The goal is to introduce
the morphological anisotropy effect in the GTN model through a proper formulation of the
void nucleation model. The parameters of the nucleation law are identified and validated
based on the damage and microstructure characterization.

5.1. GTN model

In the GTN model [25, 26, 27], the behavior of the matrix obeys the J2 plasticity model
described in Section 4.1. The yield function of the GTN model takes the following form

Φg =

(
τeq

τy

)2

+ 2fV q1 cosh

(
3

2
q2
p

τy

)
− q2

1fV
2 − 1 , (17)

in which τeq =
√

3
2
dev (τ ) : dev (τ ) is the von Mises equivalent stress, p = tr(τ )

3
, fV is the

porosity, and q1 and q2 are two material constants, which were introduced to improve the
model prediction.

Similar to Eq. (14), the associative plastic flow rule reads

Dp = Ḟp · Fp−1 = Λ̇
∂Φg

∂τ
, (18)

where Λ̇ is the plastic multiplier and ∂Φg

∂τ
is the normal to the yield surface Φg.

The evolution of the porosity fV results from different contributions as

ḟV = (1− fV ) tr (Dp)︸ ︷︷ ︸
ḟV gr

+ḟV nu + kω
(
1− ζ2

)
fV

dev (τ ) : Dp

τeq︸ ︷︷ ︸
ḟV sh

, (19)

where the first term ḟV gr (so-called growth term) is the usual term associated to the plastic
incompressibility of the matrix [26, 27]; the second term ḟV nu (so-called nucleation term) is
the contribution of new voids nucleated due to particle debonding or cracking [9]; and the
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third term ḟV sh (so-called shear term) is not present in the original GTN model but was
proposed by Nahshon and Hutchinson [16] based on heuristic arguments to account for void
deformation and reorientation occurring under low stress triaxiality and shear-dominated
distortions. In the shear term, kω is a material constant and ζ is the Lode parameter defined
in Eq. (2). In the following, since the void growth term ḟV gr and the heuristic Nahshon-
Hutchinson shear term ḟV sh in Eq. (19) do not incorporate the effects of the void shape, the
failure anisotropy observed in Section 3.1 is captured only through the anisotropic micro-
mechanics based nucleation law governing the term ḟV nu. In this nucleation law, the void
nucleation intensity changes with the prescribed loading direction through an activation
condition based on the Beremin model [12]. Nevertheless, considering the shear-enhanced
void growth term ḟV sh remains necessary, not only under shear dominated conditions, but
also to introduce a correction on the void evolution since the GTN model considers the
growth of spherical voids, which are only effective representations of the true voids. Indeed,
the voids tend to elongate and rotate under significant Lode effect, leading to major changes
of void shape. One should distinguish between failure at combined shear and tension loading
(corresponding to ζ = 1) versus shear and compression (corresponding to ζ = −1) as revealed
by recent micromechanics based cell-model studies [46]. However, since this work investigates
the failure under combined shear and tension only, the Nahshon-Hutchinson shear extension
is considered, in particular in Part II. In the subsequent analyses, this enhanced term can be
neglected as only the failure of the SRB specimens is considered.

The evolution law for the isotropic yield stress τy is expressed through the mean equivalent
plastic strain of the matrix εm through the hardening law. The evolution law for εm is then
determined under the assumption that the rate of current plastic work is equal to the rate of
plastic work in the matrix [25, 26, 27]

τ : Dp = (1− fV 0) τyε̇m , (20)

where τ : Dp characterizes the total plastic dissipation and fV 0 is the initial porosity.
The numerical integration of the plastic problem as well as the finite element framework

are detailed in [52]. Hereafter, we formulate the void nucleation contribution ḟV nu in Eq.
(19) in order to account for the anisotropy effects.

5.2. Anisotropic nucleation model

We assume that the anisotropy results only from the porosity nucleation step triggered by
the fracture of the elongated MnS inclusion as illustrated in Fig. 12 and discussed in Section
3.2. This anisotropic effect is accounted for by considering an effective micromechanics-based
nucleation law based on the original model of the Beremin group of scientists [12].

5.2.1. Strain-based nucleation model with an activation condition

The starting point is to rewrite the nucleation term ḟV nu in Eq. (19) as

ḟV nu =

{
Anε̇m once Φn ≥ 0 has been met during the loading history ,
0 otherwise ,

(21)

in which An is the parameter controlling the void nucleation intensity, depending not only
on the mean equivalent plastic strain of the matrix εm but also on the loading direction, and
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Φn is the void nucleation activation function expressed in the next section. Following Eq.
(21), the voids nucleate for any subsequent stress level that yields plastic deformation once
the condition Φn ≥ 0 has been met during the loading history. Additionally, one can define
pc, which is the value of εm at the onset of void nucleation, i.e. the value of εm when Φn ≥ 0
is first satisfied. The void nucleation intensity An is expressed as a function of the direction
n∗ obeying a Gaussian distribution in the spirit of the Chu and Needleman pioneering model
[9]

An (εm,n
∗) =

n∗ · fn · n∗

sN

√
2π

exp

[
−1

2

(
εm − pc − pN

sN

)2
]
, (22)

where sN and pN are the material constants and fn is a tensorial quantity, from which n∗ ·fn ·n∗
defines the fraction of voids nucleated per unit volume following the direction n∗. Only
ellipsoidal inclusions are considered in this work. For an ellipsoidal inclusion of longitudinal
axis nlong, fn takes the form

fn = fnLnlong ⊗ nlong + fnT (I− nlong ⊗ nlong) , (23)

where fnL and fnT are two material constants specifying the amount of voids nucleated per
unit volume, respectively for uniaxial loading along the longitudinal and transverse directions.

5.2.2. Anisotropic activation condition

The activation condition Φn in Eq. (21) is developed by borrowing and extending the
formulation of the Beremin model [12]. In its original form, void nucleation is activated either
by particle cracking or by interface decohesion when the maximum tensile stress in a given
particle, σn, reaches a critical value, σc, as follows

Φn = σn − σc ≥ 0 . (24)

The value of σn in Eq. (24) relates to the applied macroscopic stress τ as

σn = τI +M(τeq − τ 0
y ) , (25)

where τI is the largest eigenvalue or the maximum principal stress of τ , τeq is the macroscopic
von Mises stress, τ 0

y is the initial yield stress, and M is a function of the inclusion shape. The
advantages of the condition (24) are the possibility to include a stress triaxiality dependency
and to take the inclusion shape into account. However, no anisotropy was directly considered
in the model.

In this work, the condition (24) is extended by considering the quantities to be directional:
M and σc are no longer represented by scalars but are substituted by second order tensorial
quantities M and σc. The condition (24) is reformulated as finding the direction which
maximizes the criterion, i.e

Φn = max
n

[
n · κ · n + n ·M · n(τeq − τ 0

y )− n · σc · n
]
≥ 0 , (26)

where n denotes an arbitrary unit vector and κ = P · FT is the Kirchhoff stress. Note that
κ and τ have the same invariants, as the latter corresponds to the former interpreted in the

29



elastic corotational space [49]. Clearly, the condition (26) is fulfilled at the eigenvector n∗

associated with the largest eigenvalue of κ + M(τeq − τ 0
y )− σc, i.e.

Φn = max eig
[
κ + M(τeq − τ 0

y )− σc

]
≥ 0 . (27)

For an isotropic case (isotropic matrix and spherical inclusions), M = MI and σc = σcI, and
Eq. (27) degenerates into Eq. (24).

In Eq. (26), M and σc are written in the current configuration. Assuming no effect of
the plastic flow, these tensors are then obtained from their equivalent forms in the initial
configuration through the rotation tensor Re computed from the polar decomposition of the

elastic part of the deformation gradient Fe (i.e. Re = Fe ·
(√

Ce
)−1

), with

M = Re · M0 · ReT and σc = Re · σc0 · ReT , (28)

where M0 and σc0 are material constants. For an ellipsoidal inclusion whose longitudinal
axis is nlong, M0 and σc0 take the form

M0 = MLnlong ⊗ nlong +MT (I− nlong ⊗ nlong) , and (29)

σc0 = σcLnlong ⊗ nlong + σcT (I− nlong ⊗ nlong) , (30)

where ML, MT, σcL and σcT are material constants. The constraint σcL can be interpreted as
the fracture stress of the MnS inclusion with void nucleation occurring by particle breaking
when pulled along the main particle axis and σcT as the interface decohesion stress which
preferentially occurs when the main loading direction is transverse to the main particle axis.

5.3. Model summary

The material parameters of the GTN model enriched with the anisotropic nucleation
model described in Section 5.2 consist of the elastoplastic parameters summarized in Tab. 2
and of the porosity-related parameters summarized in Tab. 3. In general, the identification of
a parameter of such a material model can be performed either by experimental characteriza-
tion [30] or by inverse modeling based on mechanical tests [53, 54] depending on its physical
meaning. The first approach allows calibrating a material parameter in a more physical way.
In the latter, a material law is considered as phenomenological and involves fitting parame-
ters; the results obtained by numerical simulations are then fitted to the experimental ones
such that the material parameters can be found with a suitable optimization algorithm.

5.4. Identification and validation of void nucleation law

The determination of the void nucleation law described in Section 5.2 is inspired from the
work of [10, 55]. In particular, effective values of the porosity are defined based on the void
nucleation mechanism. These effective porosity values are not the voids physically measured,
but are values that can be used within the GTN model (which, again, does not take void
shape into account explicitly) to properly account for the configuration of the voids associated
to the specific void nucleation mode.

The values of the effective nucleated porosity fnL and fnT required in Eq. (23) are
identified first. On the one hand, as discussed before, when the inclusions are loaded under

30



Table 3: Porosity-related parameters of the GTN model enriched with the anisotropic nucleation model.

q1, q2 GTN coefficients (see Eq. (17))
fV 0 Initial porosity
kω Shear-controled void growth factor (see Eq. (19))
sN, pN Nucleation intensity parameters (see Eq. (22))
fnL, fnT Longitudinal and transverse nucleated porosity (see Eq. (23))
ML, MT Nucleation activation parameters (see Eq. (29))
σcL, σcT Nucleation activation parameters (see Eq. (30))

their main axis, voids nucleate by inclusion cracking. In the case of elongated inclusions with
volumetric fraction fincl and initial aspect ratio W0L (so-called longitudinal aspect ratio),
penny-shaped voids are generated with a very small aspect ratioWnucl � 1, see the schematics
of Fig. 12a. Following [10], for a sufficiently low particle fraction (i.e. fincl < 2%), an effective
“spherical” porosity fn can be evaluated by

fnL =
fincl

W0L

. (31)

If an inclusion breaks into n+ 1 fragments, Eq. (31) becomes

fnL = n
fincl

W0L

. (32)

On the other hand, when the inclusions are loaded along the transverse direction, voids
nucleate by inclusion/matrix decohesion resulting in one large void only, see the schematics
of Fig. 12b. As a result, Eq. (31) is reconsidered in the form

fnT =
fincl

W0T

, (33)

where W0T is the transverse aspect ratio.
For an ellipsoidal inclusion with semi-axes RL and RT, one has W0L = RL/RT and

W0T =
RT√
RTRL

=
1√
W0L

. (34)

Based on the microstructure characterization performed in Section 2.1, the following values
are selected W0L = 24 and W0T = 0.204. Furthermore, the micrographs show that inclusions
break into multiple small equiaxed fragments. A longer particle leads to a higher number of
fragments. For simplicity, it is assumed that fnL ≈ fincl. With fincl = 2 × 10−3, leading to
the effective porosity values to be nucleated fnL ≈ 2× 10−3 and fnT ≈ 9.8× 10−3.

The remaining parameters to calibrate are the concentration factor M0 and the critical
stress σc0 following the expressions respectively given by Eq. (29) and Eq. (30). As the MnS
inclusions have a very low material integrity with the matrix, which induces void nucleation
immediately at the onset of yielding, one considers σcL = σcT = τ 0

y . For the concentra-
tion factor M0, the values of MT and ML are estimated based on the inclusions geometry
characterized in Section 2.1 and using the relationship provided in [12]. One finally obtains
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Figure 18: Comparison of the engineering stress/engineering strain response obtained with the elastoplastic
model and with the GTN model in the longitudinal and transverse directions.

MT = 5.35 and ML = 18.8. Additionally, in Eq. (22), sN = 5× 10−3 and pN = 3sN are used
to ensure that the end of the void nucleation process occurs at a relatively small plastic strain
and that the integral of the truncated Gaussian distribution is close to the integral of the real
Gaussian distribution. The parameters for the anisotropic nucleation law are summarized in
Table 4.

Table 4: The anisotropic nucleation parameters.

sN pN fnL fnT

5× 10−3 15× 10−3 2× 10−3 9.8× 10−3

ML MT σcL/τ
0
y σcT/τ

0
y

18.8 5.35 1 1

The material parameters required for the GTN model described in Section 5.1 consist of
the elastoplastic parameters reported in Tab. 2, the parameters of the void nucleation law
reported in Tab. 4, and the remaining porosity-related parameters including q1, q2, kω, and
fV 0. The material is assumed to be initially intact with fV 0 = 0 and the porosity originates
thus only from the void nucleation on the MnS inclusions. Since the Nahshon-Hutchinson
shear term ḟV sh in Eq. (19) vanishes for axisymmetric stress states whatever the value of kω,
we consider a value kω = 0 for this particular test. The values of q1 = 1.414 and q2 = 1 were
identified based on the void cell simulations reported in Part II of this work [45].

Figure 18 compares, for the SRB specimens, the elastoplastic prediction obtained in
Section 4 to the predictions obtained with the GTN model for both the longitudinal and
transverse directions. Since void coalescence is not considered within this GTN model –it
will be captured in the framework of the coupled GTN/Thomason model in Part II– the
predictions of the GTN model shown in Fig. 18 are truncated at the onset of fracture
identified by the experimental values in the corresponding experimental tests. Prior to the
onset of failure, the elastoplastic and GTN models yield close results as a result of the
relatively low porosity level, see also [56]. However, the GTN model allows predicting the void
distribution resulting from the void growth phase, which is extracted along the axisymmetric
axis and compared to the experimental measurements in Fig. 19.
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Figure 19: Comparison of the apparent porosity distributions in terms of the distance to the fracture surface
obtained with the numerical simulations on the SRB specimens and the experimental measurements of the
fraction of MnS inclusions contributing to void nucleation: (a) in the longitudinal direction (in this case the
apparent porosity distribution is ≈ fV ), and (b) in the transverse direction (in this case the apparent porosity
distribution is ≈ fV /

√
W0L).

Because void shape effects are heuristically accounted for through Eqs. (32, 33), the
apparent porosity in the longitudinal direction is equivalent to the effective porosity fV ,
while the apparent porosity in the transverse direction is estimated by fV /

√
W0L. Figure 19

reports the apparent porosity distributions predicted with the numerical simulations using
the GTN model compared to the experimental measurement described in Section 3.2. The
numerical distributions are consistent with the experimental data in both directions despite
the high data dispersion. This gives confidence in the proposed void nucleation law even
though only the full validation addressed in Part II, involving the prediction of the fracture
strain, will provide a definitive assessment of the model.

The void nucleation law sensibility to its material parameters is now investigated by
studying their effects on the distribution of the apparent porosity as illustrated in Fig. 20
for the SRB specimen loaded in the longitudinal direction. As expected, the value of W0L

has a strong effect as reported in Fig. 20a. The results are not very sensitive to the values of
σcL as shown in Fig. 20b. This last observation is explained by Eq. (27) in which the term
in M rapidly increases during the void growth phase, leading to satisfying the condition (27)
at small plastic deformation despite a high value of σcL. Since the value of sN determines
the range of plastic strains in which the complete void nucleation occurs, this parameter has
almost no effect providing it remains small enough as shown in Fig. 20c.

6. Conclusions

The ductile fracture behavior of a high strength steel has been experimentally investi-
gated under different stress states using cylindrical round bars, plane strain, and plane stress
specimens. Owing to the presence of notches, a wide range of stress triaxiality and Lode
parameter values has been covered. The elastoplastic properties and void nucleation have
been analyzed in details. The main contributions of the work are the followings:
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Figure 20: Distribution of the apparent porosity in terms of the distance to the fracture surface for the L-
SRB specimen simulations conducted with different parameters of the void nucleation law: (a) effect of W0T ,
(b) effect of σcL, and (c) effect of sN; the experimental measurements and the fraction of MnS inclusions
contributing to void nucleation are also reported.
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• A strong anisotropy on the fracture strain is found, resulting from the morphological
anisotropy of the MnS inclusions, but with no significant plastic anisotropy.

• An anisotropic void nucleation law has been developed in the context of the GTN model
to capture the fracture anisotropy. The model involves two void nucleation mechanisms:
particle cracking and matrix/particle decohesion. Testing specimens extracted along
orientations other than the transverse and longitudinal ones would allow checking the
validity of the model for such a difficult case that would involve void rotation, an effect
not directly taken into account in the current formulation.

In Part II of this work [45], the material parameters calibration for the GTN model enhanced
by the Nahshon-Hutchinson shear modification in combination with the Thomason model will
be conducted based on the same set of experimental data. The damage-to-crack transition
framework developed in [39] will be considered to model the crack propagation and validate
the numerical method.
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[44] G. Hütter, T. Linse, S. Roth, U. Mühlich, M. Kuna, A modeling approach for the
complete ductile–brittle transition region: cohesive zone in combination with a non-
local gurson-model, International Journal of Fracture 185 (1) (2014) 129–153 (Jan 2014).
doi:10.1007/s10704-013-9914-4.
URL https://doi.org/10.1007/s10704-013-9914-4

[45] J. Leclerc, M. Marteleur, M.-S. Colla, T. Pardoen, L. Noels, V.-D. Nguyen, Duc-
tile fracture of high strength steels with morphological anisotropy. part ii: Nonlocal
micromechanics-based modeling (In Preparation).

[46] L. E. Dæhli, D. Morin, T. Børvik, O. S. Hopperstad, A lode-dependent gurson model
motivated by unit cell analyses, Engineering Fracture Mechanics 190 (2018) 299 – 318
(2018). doi:https://doi.org/10.1016/j.engfracmech.2017.12.023.
URL http://www.sciencedirect.com/science/article/pii/S0013794417306872

[47] F. Hannard, T. Pardoen, E. Maire, C. Le Bourlot, R. Mokso, A. Simar, Characteriza-
tion and micromechanical modelling of microstructural heterogeneity effects on duc-
tile fracture of 6xxx aluminium alloys, Acta Materialia 103 (2016) 558–572 (2016).
doi:10.1016/j.actamat.2015.10.008.
URL https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094

[48] Y. Bai, Effect of loading history on necking and fracture, PhD. Massachusetts Institute
of Technology, Cambridge, USA (2007).

[49] A. L. Eterovic, K.-J. Bathe, A hyperelastic-based large strain elasto-plastic constitu-
tive formulation with combined isotropic-kinematic hardening using the logarithmic
stress and strain measures, International Journal for Numerical Methods in Engineering
30 (6) (1990) 1099–1114 (1990). arXiv:https://onlinelibrary.wiley.com/doi/pdf/
10.1002/nme.1620300602, doi:10.1002/nme.1620300602.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602

[50] M. E. Gurtin, L. Anand, The decomposition f=fefp, material symmetry, and plastic irro-
tationality for solids that are isotropic-viscoplastic or amorphous, International Journal
of Plasticity 21 (9) (2005) 1686 – 1719 (2005). doi:https://doi.org/10.1016/j.

ijplas.2004.11.007.
URL http://www.sciencedirect.com/science/article/pii/S0749641904001603

[51] A. Cuitino, M. Ortiz, A material-independent method for extending stress update al-
gorithms from small-strain plasticity to finite plasticity with multiplicative kinematics,
Engineering computations 9 (1992) 437–437 (1992).

[52] J. Leclerc, V.-D. Nguyen, T. Pardoen, L. Noels, A micromechanics-based non-local dam-
age to crack transition framework for porous elastoplastic solids, International Journal
of Plasticity (2020). doi:10.1016/j.ijplas.2019.11.010.

[53] Z. Xue, M. Pontin, F. Zok, J. Hutchinson, Calibration procedures for a computational
model of ductile fracture, Engineering Fracture Mechanics 77 (3) (2010) 492 – 509 (2010).

40

https://doi.org/10.1007/s10704-013-9914-4
https://doi.org/10.1007/s10704-013-9914-4
https://doi.org/10.1007/s10704-013-9914-4
https://doi.org/10.1007/s10704-013-9914-4
https://doi.org/10.1007/s10704-013-9914-4
http://www.sciencedirect.com/science/article/pii/S0013794417306872
http://www.sciencedirect.com/science/article/pii/S0013794417306872
https://doi.org/https://doi.org/10.1016/j.engfracmech.2017.12.023
http://www.sciencedirect.com/science/article/pii/S0013794417306872
https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094
https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094
https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094
https://doi.org/10.1016/j.actamat.2015.10.008
https://linkinghub.elsevier.com/retrieve/pii/S1359645415300094
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620300602
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620300602
https://doi.org/10.1002/nme.1620300602
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620300602
http://www.sciencedirect.com/science/article/pii/S0749641904001603
http://www.sciencedirect.com/science/article/pii/S0749641904001603
https://doi.org/https://doi.org/10.1016/j.ijplas.2004.11.007
https://doi.org/https://doi.org/10.1016/j.ijplas.2004.11.007
http://www.sciencedirect.com/science/article/pii/S0749641904001603
https://doi.org/10.1016/j.ijplas.2019.11.010
http://www.sciencedirect.com/science/article/pii/S0013794409003233
http://www.sciencedirect.com/science/article/pii/S0013794409003233


doi:https://doi.org/10.1016/j.engfracmech.2009.10.007.
URL http://www.sciencedirect.com/science/article/pii/S0013794409003233

[54] M. Dunand, D. Mohr, On the predictive capabilities of the shear modified gurson and
the modified mohrcoulomb fracture models over a wide range of stress triaxialities and
lode angles, Journal of the Mechanics and Physics of Solids 59 (7) (2011) 1374 – 1394
(2011). doi:https://doi.org/10.1016/j.jmps.2011.04.006.
URL http://www.sciencedirect.com/science/article/pii/S0022509611000688

[55] D. Lassance, D. Fabregue, F. Delannay, T. Pardoen, Micromechanics of room and high
temperature fracture in 6xxx Al alloys, Progress in Materials Science 52 (1) (2007) 62–
129 (2007). doi:10.1016/j.pmatsci.2006.06.001.
URL https://linkinghub.elsevier.com/retrieve/pii/S0079642506000399

[56] T. Pardoen, F. Delannay, Assessment of void growth models from porosity measurements
in cold-drawn copper bars, Metallurgical and Materials Transactions A 29 (7) (1998)
1895–1909 (Jul. 1998). doi:10.1007/s11661-998-0014-4.

41

https://doi.org/https://doi.org/10.1016/j.engfracmech.2009.10.007
http://www.sciencedirect.com/science/article/pii/S0013794409003233
http://www.sciencedirect.com/science/article/pii/S0022509611000688
http://www.sciencedirect.com/science/article/pii/S0022509611000688
http://www.sciencedirect.com/science/article/pii/S0022509611000688
https://doi.org/https://doi.org/10.1016/j.jmps.2011.04.006
http://www.sciencedirect.com/science/article/pii/S0022509611000688
https://linkinghub.elsevier.com/retrieve/pii/S0079642506000399
https://linkinghub.elsevier.com/retrieve/pii/S0079642506000399
https://doi.org/10.1016/j.pmatsci.2006.06.001
https://linkinghub.elsevier.com/retrieve/pii/S0079642506000399
https://doi.org/10.1007/s11661-998-0014-4

	Introduction
	Experimental procedures
	Material
	Mechanical tests
	Damage characterization methods

	Experimental results
	Mechanical tests
	Tensile tests on RB specimens
	Tensile tests on PE specimens
	Tensile tests on PS specimens

	Damage characterization

	Elastoplastic behavior
	Hyperelastic-based elastoplastic model
	Identification of elastoplastic parameters
	Determination of local stress state in the crack initiation region
	Influence of the stress state on the fracture strain

	Anisotropic void nucleation model and parameters identification
	GTN model
	Anisotropic nucleation model
	Strain-based nucleation model with an activation condition
	Anisotropic activation condition

	Model summary
	Identification and validation of void nucleation law

	Conclusions

