Duffa G (2013) Ablative thermal protection systems modeling. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia
Williams SD, Curry DM (1992) Thermal protection materials: thermophysical property data, Technical Report, NASA RP-1289, National Aeronautics and Space Administration, Washington
Stackpoole M, Sepka S, Cozmuta I, Kontinos D (2010) Post-flight evaluation of stardust sample return capsule forebody heatshield material. J Thermophys Heat Transf 24(4):694–707
Wright M, Cozmuta I, Laub B, Chen Y.-K, Wilcoxson WH (2011) Defining ablative thermal protection system margins for planetary entry vehicles. In: 42nd AIAA thermophysics conference, American Institute of Aeronautics and Astronautics
Seedhouse E (2016) Dragon design, development, and test. In: SpaceX's dragon: America's next generation spacecraft, Springer praxis books. Springer, Cham, pp 23–44
Natali M, Puri I, Rallini M, Kenny J, Torre L (2016) Ablation modeling of state of the art EPDM based elastomeric heat shielding materials for solid rocket motors. Comput Mater Sci 111:460–480
Reimer T, Zuber C, Rieser J, Rothermel T (2018) Determination of the mechanical properties of the lightweight ablative material zuram. Ceramic transactions series. Wiley, New Jersy, pp 311–326
Wong H-W, Peck J, Bonomi R, Assif J, Panerai F, Reinish G, Lachaud J, Mansour N (2015) Quantitative determination of species production from phenol-formaldehyde resin pyrolysis. Polym Degrad Sta 112:122–131
Wong H-W, Peck J, Assif J, Panerai F, Lachaud J, Mansour NN (2016) Detailed analysis of species production from the pyrolysis of the phenolic impregnated carbon ablator. J Anal Appl Pyrolysis 122:258–267
Bessire BK, Minton TK (2017) Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate. ACS Appl Mater Interfaces 9(25):21422–21437
Torres-Herrador F, Leroy V, Helber B, Contat-Rodrigo L, Lachaud J, Magin T (2020) Multicomponent pyrolysis model for thermogravimetric analysis of phenolic ablators and lignocellulosic Biomass. AIAA J 58:1–9
Martin A, Boyd I (2015) Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. J Spacecr Rockets 52(1):89–104
Lachaud J, Scoggins J, Magin T, Meyer M, Mansour N (2017) A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures. Int J Heat Mass Transf 108:1406–1417
Schrooyen P, Hillewaert K, Magin TE, Chatelain P (2016) Fully implicit discontinuous Galerkin solver to study surface and volume ablation competition in atmospheric entry flows. Int J Heat and Mass Transf 103:108–124
Coheur J, Turchi A, Schrooyen P, Magin T (2017) Development of a unified model for flow-material interaction applied to porous charring ablators. In: 47th AIAA thermophysics conference, (Denver, CO, US), pp. 1–13, American Institute of Aeronautics and Astronautics
Torres-Herrador F, Meurisse JB, Panerai F, Blondeau J, Lachaud J, Bessire BK, Mansour NN (2019) A high heating rate pyrolysis model for the phenolic impregnated carbon ablator (PICA) based on mass spectroscopy experiments. J Anal Appl Pyrolysis 141:104625–104635
Torres-Herrador F, Leroy V, Helber B, Contat-Rodrigo L, Lachaud J, Magin T (2020) Multicomponent pyrolysis model for thermogravimetric analysis of phenolic ablators and lignocellulosic biomass. AIAA J 58(9):4081–4089
Rein G, Lautenberger C, Fernandez-Pello AC, Torero JL, Urban DL (2006) Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame 146:95–108
Lautenberger C, Fernandez-Pello AC (2011) Optimization algorithms for material pyrolysis property estimation. Fire Saf Sci 10:751–764
Kolaitis DI, Founti MA (2013) Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire. Fire Saf J 58:151–159
Nguyen Q, Ngo T, Tran P, Mendis P, Zobec M, Aye L (2016) Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr Build Mater 129:204–215
Bruns MC (2015) Inferring and propagating kinetic parameter uncertainty for condensed phase burning models. Fire Technol 52:93–120
Yuen ACY, Chen TBY, Yeoh GH, Yang W, Cheung SC-P, Cook M, Yu B, Chan QN, Yip HL (2018) Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci 36:494–517
Yuen A, Chen T, Wang C, Wei W, Kabir I, Vargas J, Chan Q, Kook S, Yeoh G (2020) Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B Eng 182:107619
Zhang W, Zhang J, Ding Y, He Q, Lu K, Chen H (2020) Pyrolysis kinetics and reaction mechanism of expandable polystyrene by multiple kinetics methods. J Clean Prod 285:125042–125052
Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids. Elsevier, Amsterdam
Šesták J, Berggren G (1971) Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 3:1–12
Málek J, Criado J (1992) Empirical kinetic models in thermal analysis. Thermochim Acta 203:25–30
Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Málek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125–143
Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90
Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19
White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33
Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68
Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63:425–464
Najm HN, Debusschere BJ, Marzouk YM, Widmer S, Le Maître OP (2009) Uncertainty quantification in chemical systems. Int J Numer Methods Eng 80:789–814
Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–20
Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490
Flynn JH (1997) The ’temperature integral’— its use and abuse. Thermochim Acta 300:83–92
Senum GI, Yang RT (1977) Rational approximations of the integral of the Arrhenius function. J Therm Anal 11:445–447
Farjas J, Roura P (2011) Isoconversional analysis of solid state transformations. J Therm Anal Calorim 105:757–766
Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39–43
Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176
Deng C, Cai J, Liu R (2009) Kinetic analysis of solid-state reactions: Evaluation of approximations to temperature integral and their applications. Sol State Sci 11:1375–1379
Vyazovkin S (2000) Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 22(2):178–183
Órfão JJM (2007) Review and evaluation of the approximations to the temperature integral. AIChE J 53(11):2905–2915
Carrero JI, Rojas AF (2019) Calculation of the temperature integrals used in the processing of thermogravimetric analysis data. Ing Compet 21:1–10
L’vov B (2007) Thermal decomposition of solids and melts. Springer, Netherlands
Blondeau J, Jeanmart H (2012) Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 41:107–121
Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48:125–149
Goldstein HE (1969) Pyrolysis Kinetics of Nylon 6–6, Phenolic Resin, and Their Composites. J Macromol Sci Chem 3(4):649–673
Trick KA, Saliba TE, Sandhu SS (1997) A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 35(3):393–401
Torre L, Kenny JM, Maffezzoli AM (1998) Degradation behaviour of a composite material for thermal protection systems part I-experimental characterization. J Mater Sci 33:3137–3143. 10.1023/A:1004399923891 DOI: 10.1023/A:1004399923891
Torre L, Kenny JM, Maffezzoli AM (1998) Degradation behaviour of a composite material for thermal protection systemsPart II process simulation. J Mater Sci 33:3145–3149. 10.1023/A:1004352007961 DOI: 10.1023/A:1004352007961
Clayton JL (2001) Thermal/pyrolysis gas flow analysis of carbon phenolic material. In: The tenth thermal and fluids analysis workshop, no. NASA/CP-2001-211141
Bhatia A, Roy S (2010) Modeling the motion of pyrolysis gas through charring ablating material using discontinuous Galerkin finite elements. In:48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, American Institute of Aeronautics and Astronautics
Chen Y-K, Milos FS (2013) Effects of nonequilibrium chemistry and Darcy—Forchheimer pyrolysis flow for charring ablator. J Spacecr Rockets 50:256–269
Lachaud J, Mansour NN (2014) Porous-material analysis toolbox based on OpenFOAM and applications. J Thermophy Heat Transf 28(2):191–202
Lachaud J, van Eekelen T, Scoggins JB, Magin TE, Mansour NN (2015) Detailed chemical equilibrium model for porous ablative materials. Int J Heat Mass Transf 90:1034–1045
Hu D, Chen M, Huang Y, Wei S, Zhong X (2020) Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes. Thermochim Acta 688:178604–178615
Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33(11):1509–1515
Olejnik A, Gosz K, Piszczyk Ł (2020) Kinetics of cross-linking processes of fast-curing polyurethane system. Thermochim Acta 683:178435–178444
Abramowitz M, Stegun I (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Applied mathematics series, U.S. Department of Commerce, National Bureau of Standards
Herrador FT, Coheur J, Blondeau J, Meurisse J, Panerai F, Lachaud J, Magin T, Mansour NN (2019) Comparison between traditional and competitive reaction models for the pyrolysis of high temperature aerospace materials. In: AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics (p 3361)
Ouchi K, Honda H (1959) Pyrolysis of coal 1. thermal cracking of phenol-formaldehyde resins taken as coal models. Fuel 38:429–443
Sykes GF (1967) Decomposition characteristics of a char-forming phenolic polymer used for ablative composites. Technical Report, NASA TN D-3810, National Aeronautics and Space Administration, Washington
Torres-Herrador F, Coheur J, Panerai F, Magin TE, Arnst M, Mansour NN, Blondeau J (2019) Competitive kinetic model for the pyrolysis of the phenolic impregnated carbon ablator. Aerosp Sci Technol 100:105784–105796
Hairer E, Wanner G (1999) Stiff differential equations solved by Radau methods. J Comput Appl Math 111:93–111
Curtiss CF, Hirschfelder JO (1952) Integration of stiff equations. Proc Natl Acad Sci 38:235–243