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Abstract This paper provides the analytical solution to a one-parameter Šesták-
Berggren kinetic model for the thermoanalytical study of pyrolysis reactions involv-
ing multiple independent parallel reactions. Such multiple independent parallel reac-
tions are widely used, for instance, in the modeling of the pyrolysis of thermal protec-
tion materials used in heatshields for spacecraft during the atmospheric entry phase.
Solving inverse problems to infer parameters of the kinetic model through optimiza-
tion techniques or Bayesian inference methods for uncertainty quantification may
require a large number of evaluations of the response and its sensitivities (derivatives
with respect to parameters). Moreover, in the case of kinetic equations, the Arrhenius
parameters can exhibit strong dependence that can require further model evaluations
for an accurate parameter calibration. The interest of this analytical solution is to re-
duce computation cost while having high accuracy to perform parameter calibration
from experiments and sensitivity analysis. We propose to use exponential-integral
functions to express the solution of the temperature integral and we derive the ana-
lytical solution and its sensitivities for the parallel reaction model both for constant
temperature (isothermal) and for constant heating rate conditions. The solution is val-
idated on a six-equation model using parameters inferred in a previous work from the
experimental data of the pyrolysis of a phenolic-impregnated carbon ablator (PICA)
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material, and we compare the computational cost and accuracy of the implemented
analytical solution with a numerical solution. Our results show that the use of such
analytical solution with an accurate computation of the exponential-integral function
significantly reduces the computational cost compared to the numerical solution.

Keywords Multi-step kinetics · Composite materials · Temperature integral ·
Exponential-integral · Arrhenius equation · Sensitivity analysis

1 Introduction

During the atmospheric entry of spacecraft, the high temperatures achieved (> 4000K)
cannot be withstood by any known material [1]. A successful solution for shield-
ing spacecraft is the use of carbon/phenolic ablative thermal protection materials
(TPMs) [2–7]. These materials undergo physico-chemical transformations by which
they absorb part of the incoming heat while getting decomposed. One of the main
endothermic processes is the pyrolysis of the phenolic phase of the composite.

Thermoanalytical studies involve using experiments to determine the reaction
process provided a given temperature increase and characterize the species that are
produced through the reaction. For instance, in order to study the pyrolysis decom-
position of TPMs and in particular porous carbon/phenolic composites, recent ex-
perimental studies have been reported in Wong et al. [8,9] and Bessire et al. and
Torres-Herrador et al. [10,11], in which the pyrolysis was carried out under isother-
mal conditions and linearly increasing temperature, respectively. The mass of the
sample as a function of temperature and for different heating rates is typically mon-
itored using thermogravimetric analysis (TGA), such as in [8,9,11]. Furthermore, in
Bessire et al. [10], the identification and production of the volatile decomposition
products are measured by a mass spectrometer, while in Wong et al. [8,9] they are
measured using gas chromatography techniques.

However, in general, the reaction rates characterizing the reaction process cannot
be measured directly and we must rely on mathematical and numerical modeling
of the reaction. The reaction rate is usually parametrized in terms of temperature
and the extent of conversion (or advancement of reaction factor). The dependence on
temperature, called the rate constant, is typically parameterized through the Arrhenius
equation. The dependence on the extent of conversion is parameterized using a model
reaction that depends on the type of the reaction [12]. In particular, the majority of
model reactions can be generalized using the Šesták-Berggren equation [13–15]. One
of the objectives of kinetic studies is to determine the kinetic parameters appearing
in the parameterization of the rate constant and the model reaction.

In order to infer the kinetic parameters one must solve an inverse problem. Several
methods have been used in order to infer kinetic parameters (see reviews in [16–
18]). Model-free approaches allow to evaluate the activation energy without the need
of providing the model reaction. The isoconversional method is the most common
model-free method and relies on the isoconversional principle that states that the
reaction rate is only a function of the temperature at a fixed value of the extent of
conversion. A variant of the isoconversional method is the integral isoconversional
method, used to improve the accuracy of the method, and is obtained by integrating
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the reaction rate and applying to it the isoconversional principle. The integration of
the rate constant over the temperature range is termed the temperature-integral (or
Arrhenius integral) and its solution has been extensively studied, as discussed below.

When the reaction process is complex, e.g. competitive reaction or multicompo-
nent (multi-step) reactions, and cannot be expressed in terms of one-step kinetics,
one generally resorts to model-fitting approaches. Model-fitting approaches allow to
infer at the same time kinetic parameters and to postulate the model reaction. They
consist in formulating the inverse problem, for instance, as an optimization prob-
lem that seeks to minimize the mismatch between the experimental observations and
the model representing the physics. This mismatch can be expressed as the sum of
the squares of the residuals between the experimental observations and the output
of the model given its parameter values [19,20]. In a Bayesian framework, this mis-
match can appear in the argument of a likelihood function in a Bayes formula [21,
22]. The solution of the optimization or Bayesian inverse problem is usually per-
formed numerically by using optimization algorithms or Markov Chain Monte Carlo
methods that require the repeated computation of the model output for given parame-
ters. This model output is computed numerically by solving the initial value problem
that represents the unknown reaction rate, see for instance [23–26] for the resolu-
tion of pyrolysis reactions. This overall numerical resolution can be computationally
expensive, in particular when computations of derivatives with respect to the param-
eters are needed in optimization and Bayesian inference algorithms that exploit gra-
dients [27], which can be computed using finite differences or adjoint-methods [28].
Moreover, in the case of kinetic equations, the Arrhenius parameters inferred from
model-fitting approaches can exhibit strong dependence, known as the kinetic com-
pensation effect [29,12,17], and can require even further model evaluations for an ac-
curate parameter calibration. Comparisons of model-free and model-fitting methods
are provided for instance in [19,30,17]. Therefore, having an efficient—analytical—
computation of the solution is convenient when a large number of model evaluations
is required.

For both the model-free and the model-fitting methods, the computation of the
temperature integral is required. The class of model-free methods has been the sub-
ject of many studies for solving the temperature integral. The main challenge in the
calculation of the analytical solution is in finding the expression of the temperature
integral, which solution depends on the temperature program of the experiment. In the
case of a linearly increasing temperature, this temperature integral can be expressed
in terms of special functions and in particular an exponential integral function [31–
33]. In thermoanalytical studies, exponential integral functions can be evaluated by
using various approximation formulae [34–36,33,17] or by computing the integral
numerically [37]. The approximation formulae can result in different approximate
values of the temperature integral with different levels of accuracy, sometimes re-
sulting in discrepancies in the activation energy [36,33]. With the improvement of
computational resources, Orfao [38] suggested that numerical integration should be
used whenever it is possible.

Nowadays, the computational power and the efficient implementation in software
packages of the special functions appearing in the analytical solution of the tempera-
ture integral allow an accurate computation of their values in an amount of time com-
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parable to the evaluation of approximation formulae or their numerical integration.
Recently, Carrero and Rojas [39] performed a comparison of the numerical integra-
tion using a Simpson 3/8 rule of the temperature integral with its solution including
different implementations of the special functions. The authors showed that the rela-
tive errors between the numerical integration and the solutions with the exponential
integral were of the order of 10−10. This makes the use of the analytical solution of
the temperature integral both accurate and computationally efficient.

Therefore, the main contributions of this paper are the followings. We obtain
the analytical solution and its derivatives with respect to kinetic parameters (sen-
sitivities) for multi-step (or multicomponent) reactions featuring a one-parameter
Šesták-Berggren reaction model. As in [39], we provide the derivation of the ana-
lytical solution of the temperature integral based on an accurate and fast computation
of the exponential-integral function. As an illustration, we apply the analytical solu-
tion to the multicomponent model to the pyrolysis of TPMs from the experiment of
Bessire et al. [10] for which the kinetic parameters were inferred in Torres-Herrador
et al. [20]. We illustrate the computational gain and accuracy that is achieved by us-
ing this analytical expression compared to a numerical solution of the initial value
problem that models the reaction.

The paper is organized as follows. In Sect. 2.1, we review the modeling of pyrol-
ysis by using in a set of independent parallel reactions and establish the conditions
in which we are interested. Then, in Sect. 2.2, we derive the analytical solution to
the system of differential equations along with its gradient with respect to model pa-
rameters. In Sect. 3, we present the material considered for the pyrolysis simulations,
the experimental set-up and the calibration method for material properties are briefly
recalled. Finally, in Sect. 4, we verify the accuracy and computational speed of the
implemented analytical solution by comparing it with the numerical solution for a
six-reaction pyrolysis model that was fitted previously to a non-isothermal experi-
ment and we perform a local sensitivity analysis.

2 Analysis

2.1 Mathematical description of multi-component pyrolysis

The literature on pyrolysis of organic compounds is vast [12,16,17], and many dif-
ferent models have been proposed to simulate this process. In this work, we focus
on multi-component (parallel) models since they are the most used in aerospace en-
gineering for modeling thermal protection material decomposition [24,20]. These
models assume that the pyrolysing solid is made up of different sub-phases which
independently undergo pyrolysis. We first start with a short review of the single-stage
kinetic equation and the parameterization for the constant rate and model reaction.
We then explain the multi-stage pyrolysis model.
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2.1.1 Single-stage kinetic equation

A pyrolysis reaction occurs when an organic compound is submitted to high tem-
peratures in the absence of oxygen. This reaction is typically assumed to be a non-
reversible process whose evolution is governed by a reaction rate. In this process,
the reactant R gets decomposed into different gaseous products S j, with 1 ≤ j ≤ Ns
and Ns the total number of species, and a residual solid known as char (denoted C)

R(s) k−→ C(s)+ γ1S(g)
1 + γ2S(g)

2 + · · ·+ γ jS
(g)
j , (1)

where the γ j are the stoichiometric coefficients and the superscripts denote the state
of matter, either solid (s) or gaseous (g) here.

It is common to describe the amount of decomposition which has taken place
using the dimensionless fractional decomposition factor α(t) (or advancement of re-
action factor, or extent of reaction, or extent of conversion) as a function of time.
Here, we will take this factor as varying from 0 for the virgin reactant to 1 signify-
ing the complete decomposition. This factor is related to the mass m(t) of the solid
substance as

α(t) =
m0−m(t)
m0−m∞

, (2)

where m0 is the initial mass of the solid and m∞ is the mass of the solid residue after
complete decomposition (the char).

The dependence of the reaction rate on temperature is commonly described by
the Arrhenius equation [18]

k(T (t)) = A exp
{
−E

RT (t)

}
, (3)

where k(T (t)) is the constant rate (s−1), R is the universal gas constant (J K−1

mol−1), A is the pre-exponential factor (s−1) and E is the activation energy (J mol−1).
In gas reactions, A is interpreted as the frequency of molecular collision and E is the
energy that must be provided for the reaction to occur. The use of the Arrhenius
equation for solid-state reactions and the actual meaning of these kinetic parameters,
contrary to gas reactions, is still subject to debate [18]. A possible interpretation for
A is the frequency factor or specific vibration of the reactant and for E the energy
barrier that must be surmounted during the bond redistribution occurring during the
phase change [12,40].

Temperature is not the only factor influencing the rate of the pyrolysis process:
it may depend on the fractional decomposition factor α and the pressure of volatile
products (in case of gas-solid reaction) p j. This leads to the following more general
formulation for the evolution of the solid

dα

dt
(t) = k (T (t)) f (α(t))g(p j(t)) . (4)

The dependence on the partial pressure is ignored in most kinetic studies [17]. The
dependence on the fractional decomposition (the reaction model) can be generically
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formulated as f (α) = α l(1−α)n [− ln(1−α)]r as proposed by Šesták-Berggren [13,
14]. Typical aerospace applications assume a reaction order equation, i.e. l = 0,r =
0, for the dependence on the advancement reaction: f (α) = (1−α)n, with n the
order of reaction. There are two reasons here for considering this particular form
for the reaction model. The first one is that by letting n varying with the parameter
calibration, there is still some flexibility to adjust the reaction model. The second one
is the long legacy of previous pyrolysis modeling of TPMs that assumed this form.
The adequacy of this model is indeed debatable, however it is out of the scope of the
current work. This finally leads to the following ordinary differential equation (ODE)
for pyrolysis with the one-parameter Šesták-Berggren kinetic model

dα

dt
(t) = A exp

{
−E

RT (t)

}
(1−α(t))n . (5)

This ODE represents the advancement of the reaction for a point mass sample,
which is a good approximation for many thermoanalytical experiments [11]. It can be
extended to more complex cases by considering an energy equation that include the
thermal conductivity within the material or the heat capacity of the material, in which
case the temperature is a function of space and time and the ordinary differential
equation is replaced by a partial differential equation[23,24,26].

Sometimes, the pre-exponential factor is expressed as A = A0T m, where A0 de-
notes a temperature-independent factor, in order to emphasize a potential dependence
on temperature [31]. Previous work on parameter identification for thermal protection
materials showed that the parameter m tends to zero [11], so in the following we will
set m = 0 and omit T m for simplicity. Therefore, the kinetic triplet (A , E and n) is as-
sumed to be independent of temperature and we assume in the following that A > 0,
E > 0 and n≥ 1.

2.1.2 Multi-component kinetic equations

In most cases, solid state reactions are often too complex to be described using a
single reaction [41,15]. The global reaction mechanism is encapsulated within phe-
nomenologically coherent steps describing the elementary unknown processes. It is
therefore convenient to define multiple advancement of reaction factors 0 ≤ αi ≤ 1,
where 1≤ i≤ Np idexes independent pyrolysis reactions occurring in parallel and Np
is the number of pyrolysis decomposition processes present in the solid resin (or the
number of reactants, or the number of steps). Each step represents a distinct reactant
(or sub-phase) in the solid [24]. The corresponding reaction scheme is represented
schematically in Eq. 6:

w1R(s)
1

k1−→ C(s)+ γ11S(g)1 + γ12S(g)2 + · · ·+ γ1 jS
(g)
j

w2R(s)
2

k2−→ C(s)+ γ21S(g)1 + γ22S(g)2 + · · ·+ γ2 jS
(g)
j

wiR
(s)
i

ki−→ C(s)+ γi1S(g)1 + γi2S(g)2 + · · ·+ γi jS
(g)
j

R(s)

..
.

(6)
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where wi is the relative weight, or mass fraction of compound Ri from the virgin
reactant R and ∑

Np
i=1 wi = 1. The evolution of the Np advancement of reaction factors

given the reaction scheme Eq. 6 is therefore

dαi

dt
(t) = Ai exp

{
−Ei

RT (t)

}
(1−αi(t))

ni , 1≤ i≤ Np. (7)

This expression is widely used in the aerospace community to model thermal pro-
tection materials pyrolysis [42–50,26,24,20]. We refer to this process as multi-step,
multi-component, or parallel pyrolysis reactions. The advancement of reaction fac-
tors are defined for the compounds Ri of mass mi(t) as

αi(t) =
m0,i−mi(t)
m0,i−m∞,i

, 1≤ i≤ Np (8)

and we have α(t) = ∑
Np
i=1 wiαi(t). The total mass of the sample can then be obtained

by inserting the latter in Eq. 2. The parameters wi are unknown, and m∞ can also
be an unknown if the reaction process did not reach completion at the end of the
temperature program and therefore cannot be measured experimentally, as it is the
case in Bessire et al. [10]. Moreover, it was observed that the constraint ∑

Np
i=1 wi = 1

was difficult to satisfy when performing the calibration of kinetic parameters [20].
In order to reduce by one the number of unknown parameters and avoid the need
to satisfy ∑

Np
i=1 wi = 1, we can assume that the total mass at the end of the process

m∞ expresses as a function of the initial mass as m∞ = F∞m0. Thus, we can write
Fi = wi(1−F∞) such that the total mass is finally given by

m(t) = m0−
Np

∑
i=1

αi(t)Fim0. (9)

Note that now ∑
Np
i=1 Fi ≤ 1 and the mass after completion of the reaction can be re-

trieved by computing m∞ = m0(1−∑
Np
i=1 Fi).

2.1.3 Pyrolysis gas production

The advancement of reaction factors αi cannot be observed directly from experi-
ments; thus, for calibrating model parameters, we need to provide a mathematical
expression for the model output that can be linked to the experimental observations.
TGA allows to measure the mass loss that is linked to the αi through Eq. 9 and pyrol-
ysis products can be observed using a mass spectrometer, for instance, as in Bessire
et al. [10]. The pyrolysis species production allows to observe more accurately the
independent reaction steps. Although production rate can also be obtained by differ-
entiating the TGA data, the differentiation introduces however additional numerical
noise in the experimental data. We will therefore consider the pyrolysis species pro-
duction as the observable as it is also used in Torres-Herrador et al. [11].

During pyrolysis, part of the solid material is converted into gas and pyroly-
sis gas production can be obtained from mass conservation. It is assumed that char
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and gaseous species are the only products from pyrolysis. Because the char is non-
volatile, mass variation of the sample is necessarily linked to the pyrolysis gas pro-
duction and any sample mass decrease implies pyrolysis gas production. Thus, the
pyrolysis gas production rate is given by

π(t) =−dm
dt

(t) =
Np

∑
i=1

Fi
dαi

dt
(t)m0 =

Np

∑
i=1

πi(t), (10)

where πi(t) = Fi
dαi
dt (t)m0 is the mass production rate coming from the decomposi-

tion of the reactant i. The last equality on the right-hand side of Eq. 10 is the total
production rate defined as the sum of the contributions of all the reactants that are
decomposing. The production of species j, required when we need to track species
in flow simulations, is obtained from νi j(t) = γi jπi(t) where γi j is the mass fraction
of species j produced from reaction i. Finally, the total production of species j is
obtained as

ν j(t) =
Np

∑
i=1

νi j(t) =
Np

∑
i=1

γi jπi(t). (11)

2.2 Analytical solution of the multi-component model with the one-parameter
Šesták-Berggren equation

An analytical solution does not necessarily exist when the temperature program is
an arbitrary function of time. However, most experimental studies such as in TGA
are carried out by using either a linearly increasing temperature T = β (t− t0)+T0
with β the heating rate in Kmin−1 ([10,11]), t0 the initial time and T0 the initial tem-
perature, or constant temperature T = const (isothermal conditions) ([8,9,51]). The
case of a linearly increasing temperature is widely used in thermal protection ma-
terials decomposition studies [42,52,44,10,11,53]. For constant temperature, some
experimental set-ups use a piecewise constant temperature program [8,9], where the
isothermal condition is maintained only during a given time interval. In these set-
tings, the temperature T (t) is maintained at a constant value T (k) during a time in-
terval A(k) =

[
t(k)0 , t(k)f

]
in order to collect and analyze the species products before

increasing the temperature to its next value T (k+1). The temperature is thus assumed
to be the piecewise constant function T (t) = T (k) for all t ∈ A(k) with 1 ≤ k ≤ nstep
and nstep the number of temperature increase.

Therefore, we wish to find the analytical solution to the initial-value problem
(IVP) 

dαi

dt
(t) = Ai exp

{
Ei

RT (t)

}
(1−αi(t))

ni , for t > t0,

αi(t0) = αi,0, i = 1, . . . ,Np

(12)

with either

T (t) = const (isothermal) (13)
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or

T (t) = β (t− t0)+T0 (linearly increasing temperature). (14)

The system of equations in (12) is a system of independent first-order non-linear
ODEs with constant coefficients in the case of (13) and with non-constant coefficients
in the case of (14). We start by performing a simple change of variables as follows.
Substituting ui(t) = 1−αi(t) leads to

dui(t)
dt

=−un
i (t)Ai exp

{
−Ei

RT (t)

}
. (15)

Dividing both handsides by u−n
i (t), assumed nonzero, and integrating both sides of

the equation with respect to time, we have

−
∫ t

t0
u−n

i (t̃)
dui(t̃)

dt̃
dt̃ =

∫ t

t0
Ai exp

{
−Ei

RT (t̃)

}
dt̃, (16)

where the right-hand side is the integral of the Arrhenius equation and is named the
temperature integral

Ii(t) =
∫ t

t0
Ai exp

{
−Ei

RT (t̃)

}
dt̃. (17)

The case where ni = 1 is left for the end of the section. Assuming that ni 6= 1, the
left-hand side can be integrated by substitution leading to

−
∫ ui(t)

ui(t0)
ũ−ndũ =− 1

1−ni

(
u1−ni

i (t)−u1−ni
i (t0)

)
. (18)

Inserting this expression in Eq. 16 and finally expressing the result with the advance-
ment of reaction factor, we obtain

ui(t) =
(

u1−ni
i (t0)− Ii(t)(1−ni)

)1/(1−ni)
, (19)

αi(t) = 1−
(
(1−αi(t0))

1−ni − Ii(t)(1−ni)
)1/(1−ni)

. (20)

In this last equation, we still need to provide an expression for the temperature inte-
gral Ii(t), that depends on time through the temperature program.

2.2.1 Case 1: piecewise isothermal

In isothermal pyrolysis experiments, we assume the temperature to be constant on
a given time interval A = [t0, tf]. Thus Ii(t) is easily integrated on the time interval,
leading to

Ii(t) = Ai exp
{
−Ei

RT

}
(t− t0). (21)
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For completeness, we consider the more general case of a piecewise constant tem-
perature as a function of time; this procedure is applied, for instance, in Wong et al. [8,
9]. The overall experiment is seen as the succession of nstep smaller experiments with
advancement of reaction factors α

(k)
i (t) where the initial condition α

(k)
i (t0) depends

on the state of the material at the end of the previous time interval. The temperature
T (k) is maintained constant during the time interval A(k) =

[
t(k)0 , t(k)f

]
and is equal to

T (k+1) in the next interval. The transient part of temperature increase between each
time interval is neglected because of its short duration compared to the whole pro-
cess. The solution for the advancement of reaction factor as a function of time in the
k interval is therefore

α
(k)
i (t) = 1−

((
1−α

(k)
i (t(k)0 )

)1−ni
− (1−ni)Ai exp

{
−Ei

RT (k)

}
(t− t(0)0 )

)1/(1−ni)

,

(22)

and the solution is αi(t) = α
(k)
i (t) for all A(k). Usually α

(0)
i (t(0)0 ) = 0 in the first time

interval, then the value for α
(k)
i (t(k)0 ) in a given time interval is equal to α

(k−1)
i (t(k−1)

f )

from the previous time interval. This expression simplifies further if we set t(k)0 = 0 ∀
k. If nstep = 1, then the solution is for a single isothermal condition.

2.2.2 Case 2: linearly increasing temperature

In this case, the temperature increases linearly with time until the end of the experi-
ment, thus T = β (t− t0)+T0 and

Ii(t) =
∫ t

t0
Ai exp

{
−Ei

R(β (t̃− t0)+T0)

}
dt̃. (23)

For the computation of Ii(t), we apply the following change of variables: vi =−Ei/(R(β (t−
t0)+T0)) thus dt = Ei/(Rβv2

i )dvi. The integral becomes

Ii(t) =
∫ vi

vi,0

Ai

β

Ei

Rṽ2 exp{ṽ}dṽ

=
Ai

β

Ei

R

∫ vi

vi,0

exp{ṽ}
ṽ2 dṽ

=
Ai

β

Ei

R

([
−exp{ṽ}

ṽ

]vi

vi,0

+
∫ vi

vi,0

exp{ṽ}
ṽ

dṽ

)
, (24)

where the last line results from the integration by parts. The second summand on the
right-hand side is the exponential-integral function [54]

Ei(v) =
∫ v

−∞

exp(ṽ)
ṽ

dṽ (v > 0). (25)
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Thus, inserting the exponential-integral function into Eq. 24 leads to

Ii(t) =
Ai

β

Ei

R

[
−exp{ṽ}

ṽ
+Ei(ṽ)

]vi(t)

vi,0

=
Ai

β

Ei

R

(
−exp{vi(t)}

vi(t)
+

exp{vi,0}
vi,0

+Ei(vi(t))−Ei(vi,0)

)
=

Ai

β

Ei

R

(
RT (t)

Ei
exp
{
−Ei

RT (t)

}
− RT0

Ei
exp
{
−Ei

RT0

}
. . .

+Ei
{
−Ei

RT (t)

}
−Ei

{
−Ei

RT0

})
. (26)

This can be inserted into Eq. 20 to obtain the final expression of the advancement
coefficient of each reactant i as a function of time.

Usually, the advancements of reaction are plotted against temperature instead of
time for convenience. Gathering the terms that depend on temperature, we can write

αi = 1−
{
(1−ni)

[
−Ai

β
T exp

{
−Ei

RT

}
− Ai

β

Ei

R
Ei
{
−Ei

RT

}
+Ci

]} 1
1−ni

, (27)

Ci =
(1−αi(T0))

1−ni

1−ni

+
Ai

β
T0 exp

{
−Ei

RT0

}
+Ei

{
−Ei

RT0

}
AiEi

βR
. (28)

For the test case in Sect. 4 we will consider the gas production from Eq. 11. Thus,
the gas production rate for species j is given by (with Fi j = γi jFi)

ν j =
Np

∑
i=1

m0Fi jβ
dαi

dT
, (29)

and inserting the analytical solution gives

ν j =
Np

∑
i=1

m0Fi j

({
(1−ni)

[
−Ai

β
T exp

{
−Ei

RT

}
. . .

−Ai

β

Ei

R
Ei
{
−Ei

RT0

}
+

(1−αi,0)

1−ni

1−ni

+
Ai

β
T0 exp

{
−Ei

RT0

}
. . .

+Ei
{
−Ei

RT0

}
EiAi

β

]} 1
1−ni

)ni

Ai exp
{
−Ei

RT

}
. (30)

Finally, computation of derivatives with respect to parameters are provided in
Appendix A.
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2.2.3 Particular case: linear Šesták-Berggren model

The case of ni = 1 in Eq. 7 results in a linear system of uncoupled ODEs that is now
addressed in this section for the two heating conditions.

We substitute ni = 1 in Eq. 16 and the left-hand side leads to

ln(ui,0)− ln(ui(t)) = Ii(t). (31)

For the (piecewise) isothermal case, with Ii(t) from Eq. 21, this leads to

α
(k)
i (t) = 1− (1−α

(k)
i,0 )exp

(
−Ai exp

{
−Ei

RT

}
(t− t(k)0 )

)
. (32)

For the linearly increasing temperature, we substitute Ii(t) from Eq. 26, thus leading
to

αi = 1−Ci exp
{
−Ai

β
T exp

{
−Ei

RT

}
− Ai

β

Ei

R
Ei
{
−Ei

RT

}}
, (33)

Ci = (1−αi,0)exp
{

Ai

β
T0 exp

{
−Ei

RT0

}
+

Ai

β

Ei

R
Ei
{
−Ei

RT0

}}
. (34)

2.2.4 Matrix formalism

The case of ni = 1 can be written using a matrix formalism thanks to the linearity
of the equations. This partiular case of ni = 1 was already considered in the more
general framework of competitive reaction mechanisms in [55] where the system of
ODEs is no longer uncoupled.

Using the change of variables ui(t) = 1−αi(t), the general reaction mechanisms
Eq. 6 with Eq. 7 governing the evolution of the advancement and ni = 1 can be written
as

du
dt

= A(t)u, (35)

where A(t) is a square matrix whose coefficients are a linear combination of the
reaction rates ki and depend on time. In the case of a multi-component pyrolysis
model such as the one presented here, the matrix A is diagonal with Aii =−ki.

3 Materials and methods

The materials considered in this study are composites made up of short carbon fibers
infused with a phenolic resin that are used in the thermal protection system of space-
craft. In particular, we consider the phenolic-impregnated carbon ablator (PICA) that
has been successfully used in previous space mission for his excellent thermal pro-
tection performances.

Recent experiments were performed in Bessire et al. [10] on PICA materials to
measure mass loss and pyrolysis products accurately. The authors provide in-situ
measurements of PICA pyrolysis product yields using mass spectrometry in the range
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Table 1 Parameter values for the six-reaction pyrolysis model from [20], with the F parameters re-scaled
in order to consider the pyrolysis of a pure resin.

R F log(A ) (s−1) E (kJ mol−1) n

1 0.0039 6.96 61.3 9.96
2 0.0258 6.59 77.6 5.65
3 0.0873 6.71 95.1 4.23
4 0.0804 6.67 103.0 4.38
5 0.0112 6.58 113.9 6.68
6 0.0254 6.35 175.2 8.85

375 to 1400K at four different heating rates. A PICA sample is heated in a vacuum
chamber by means of an electrical current that passes through the sample. The mass
spectrometer then provides the products yields of 14 gaseous species as a function of
the material temperature.

In order to develop new chemical models for the simulation of the pyrolysis of
thermal protection materials, Torres-Herrador et al. [20] performed a model calibra-
tion using the experiments of Bessire et al. [10]. A model fitting procedure was per-
formed using a multi-objective genetic algorithm (MOGA) and the pyrolysis model
implemented in the software PATO [49] and solved in time using a first-order implicit
scheme. The resulting model features six reactions (Np = 6) and allows to simulate
the production of the 14 gas products that were observed experimentally. The heating
rate considered is β = 360 Kmin−1and the temperature ranges from 300 up to 1400
K. The 24 kinetic parameter and mass fraction values resulting from the fitting pro-
cedure of the six-reaction model are summarized in Table 1. We note that the mass
fractions Fi have to be updated compared to [20] because the model presented here
considers the pyrolysis of a pure resin, while Eq. 9 is not considering the mass of
non-pyrolyzing phases, that are the carbon fibers. Therefore, for the normalization of
the variable with the total mass of the composite, we have to multiple Fi by a factor
equal to m0/(m0 +mfibers) which is around 0.43 (43% of the mass of the material
comes from the resin).

4 Results

In this last section, we illustrate the efficiency of the implemented analytical solution
by comparing it with a numerical solution of the non-linear system of ODEs. We
consider the pyrolysis scheme described in Torres-Herrador et al. [20] based on the
experiments of Bessire et al. [10] that was described in the previous section. We verify
the accuracy of the analytical solution and we show the computational gain achieved
by using it in a case involving a linearly increasing temperature. We finally perform a
sensitivity analysis to illustrate the use of the derivatives with respect to parameters.
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4.1 Comparison of the analytical solution with a numerical solution

The solutions (both analytical and numerical) to the pyrolysis equations and their
derivatives are implemented in an in-house Python code. The exponential-integral
function is computed using the special.expi() function from the scipy library.
Its implementation is based on a fortran implementation of the series expansion of
the exponential-integral Ei(x) (with x > 0) [54]. For the numerical solution, the in-
tegration of the system of ODEs is performed using the integrate.solve ivp()

function from the scipy library. In particular, it features an implicit multi-step Runge-
Kutta method of the Radau IIA family of order 5 [56]. Indeed, chemical reactions
involving the Arrhenius equation can be stiff, i.e. there can be a rapid variation of the
solution due to a fast degradation of a reactant compared to an other one, and for gen-
erality we decided to use a numerical solver capable of dealing with these different
reaction scales [57]. The varying time step is determined by the solver that keeps a
relative tolerance, which controls the number of correct digits, that we set to 10−8.

The numerical solution, the analytical solution and their derivatives are computed
at 101 points in the temperature range with the parameter values from Table 1. The
comparison of the analytical solution with the numerical solution is shown in Fig. 1.
The solution is shown for the mass loss in Fig. 1a and the total gas production in
Fig. 1b. The quantities on the y-axis are normalized by the total mass of the compos-
ite. Mass loss of the material is computed from Eqs. 28 and 27 and the production of
pyrolysis gas is computed from Eq. 30 and we can see from Fig. 1 that the two solu-
tions match. The relative errors of the analytical solution compared to the numerical
solution are computed as

err(T ) =
∣∣∣∣yanalytical(T )− ynumerical(T )

ynumerical(T )

∣∣∣∣ . (36)

For the mass of the material, we have err(T ) ≤ 2.5× 10−8 which is of the order
of magnitude of the relative tolerance set to the numerical solver and show that the
analytical solution is computed with high accuracy. For the total gas production, we
have err(T ) ≤ 6.2× 10−6, which is higher than for the mass because the reaction
process rate needs to be recomputed from Eq. 12.

In Fig. 1b, we also show the production rate πi coming from the decomposition of
each reaction i with π = ∑

Np
i=1 πi to identify the different contributions of all reactions

to the global production rate.

Derivatives are computed numerically using a first-order finite-difference formula
by perturbing one by one the parameters about their nominal value. Each perturbed
solution is computed using the analytical expressions Eqs. 37–46 (sensitivities of π

and ν are the same here because we considered only one species). Results for the 24
derivatives are shown in Fig. 2. Once again, the two solutions match over the whole
temperature range.
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Fig. 1 Comparison of the solution obtained from the analytical solution and the numerical integration for
(a) the sample mass and (b) the total production rate.

4.2 Computational gain for parameter inference

In order to illustrate the computational gain of this solution, we compared the execu-
tion time to compute 600 times the solution, which corresponds to the initial sample
size for the MOGA algorithm in [20]. Thus, the following analysis only characterizes
the computational time for the initialization of the MOGA algorithm, but the total
number of model evaluations is higher. Parameter values are kept constant, but we
should keep in mind that varying them with the iterations could influence the compu-
tational time of the numerical solution. The computations are performed on a single
CPU Intel Core i7-6820HQ using a single thread. The time to compute the 600 so-
lutions numerically took 42.46 s while the analytical evaluations took 0.29 s, which
is almost 150 times faster. Although they are not used in the MOGA algorithm, we
can estimate the time that the derivatives would take to be computed. For the numeri-
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cal computation of the derivatives, we need one additional model evaluation for each
perturbed parameter for the finite difference evaluation that would be approximately
24× 42.46 s (≈ 17 min), while the 600 analytical evaluations of the derivatives is
taking approximately 3.35 s, which is approximately 300 times faster.

It is also important to note that the computational time increases proportionally
with the number of equations in the model Np (and so the complexity of the pyroly-
sis model). This increase in the computational time is more impacted by the number
of equations with the numerical solution because of the adaptive time-step proce-
dure and the time to compute the Jacobian matrix (derivative of the right-hand side
of Eq. 12 with respect to t) needed for the implicit Radau IIA method, which was
evaluated by the solver using finite differences.

4.3 Local sensitivity analysis

Finally, we perform a local sensitivity analysis from the graph of the sensitivities in
Fig. 2. We can first observe the compensation effect between A and E (for both i)
from Fig. 2a and 2b: we see from the graphs that they have opposite effects on the
solution (because E appears with a negative sign in the exponential). This means that
an increase of A can be compensated by a decrease of E while keeping the value of
the solution π almost constant. This will result in a wide range of possible values for
A and E when calibrating their values from experiments and explains the hurdle of
calibrating them at the same time. We also see that the sensitivity of π with respect
to E is roughly three orders of magnitude higher than with A and due to the fact that
E appeared in the exponential term.

Regarding the order of magnitudes of all the parameters, we see that the Fi param-
eters have the highest impact on the solution π , followed by ni and finally Ei and Ai.
Fi has the biggest impact on the production as it influences directly the production of
char and is positive everywhere. Increasing Fi will always result in an increase of the
gas produced from the pyrolysis reaction and less char left at the end of the process.
The shape of the curves for Ei and ni is almost the same, with a little shift in temper-
ature and with three orders of magnitude difference. Finally, we note that reaction 1
has a high influence on the production rate despite its lowest contribution to the total
mass (F1 = 0.00039). Comparatively, reaction 5 and 6 have higher mass fractions, but
∂π/Fi (Fig. 2d) is lower than for reaction 1. This is due to the fact that changes in the
mass fraction of the first reaction will impact the subsequent productions rates.

This short analysis is valid locally about the nominal parameter values and pro-
vides a good overview of the relative influence of the parameters. We should also keep
in mind that the analysis might be slightly different with a different combination of
the nominal parameters. Finally, a global sensitivity analysis should be performed to
give a more global overview of the impact of the parameters on the solution.

5 Conclusion

We presented an analytical solution for multi-component pyrolysis models with an ar-
bitrary number of pyrolysis reactions and featuring the one-parameter Šesták-Berggren
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Fig. 2 Comparison of the sensitivities computed analytically and using finite differences (numerical) with
respect to the 24 parameters: (a) pre-exponential factors Ai, (b) activation energies Ei, (c) reaction orders
ni and (d) mass fractions Fi. The continuous and discontinuous lines are for the analytical solutions and the
markers for the numerical solutions. For the clarity of the images, we displayed only 25 markers instead
of the 101 points where the solution were computed.
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kinetic model. The solution of the temperature integral is expressed as function of
exponential-integral functions that are calculated numerically using its series expan-
sion. The mathematical derivation of the solution was performed for two typical heat-
ing conditions often encountered in pyrolysis experiments, namely constant temper-
ature and constant heating rate. The sensitivities of the solution with respect to the
different model parameters were also calculated.

We illustrated the result of the analytical solution on a six-reaction pyrolysis
model for the linearly increasing temperature case. We showed the high accuracy
of the proposed analytical solution by comparing it with a numerical solution, and
we showed that the computational gain could be significant when performing, for
instance, parameter inference compared to the numerical solution.

We finally ended with a local sensitivity analysis and we observed the well-known
compensation effect and the relative importance of the mass fraction over the other
parameters. However this analysis is only reflecting the local behavior about the nom-
inal parameter values.

In future works, this significant gain in computational time due to the use of the
analytical solution will be very helpful for building detailed pyrolysis models with
a high number of equations by applying Bayesian inference algorithms to infer the
parameter values for uncertainty quantification.

A Computation of derivatives

The computation of derivatives is also required for gradient-informed algorithms to compute the solution
of inverse problems. Derivatives are expressed here as a function of temperature and for the linearly in-
creasing temperature case as it will be used in an illustrative example in the next section. The chain rule
provides the following results:

∂ν j

∂Ai
= m0Fi j

(
(1−αi)

ni−1 exp
{
−Ei

RT

}(
niAi
−∂αi

∂Ai
+(1−αi)

))
, (37)

∂αi

∂Ai
=−

(
(1−ni)

(
−AiT

β
exp
{
−Ei

RT

}
− Ai

β

Ei

R
Ei
{
−Ei

RT

}
+Ci

)) ni
1−ni

. . .

×
(
−T

β
exp
{
−Ei

RT

}
− Ei

RT
Ei
{
−Ei

RT

}
+

∂Ci

∂Ai

)
, (38)

∂Ci

∂Ai
=

T0

β
exp
{
−Ei

RT0

}
+Ei

{
−Ei

RT0

}
Ei

βR
, (39)

∂ν j

∂Ei
= m0Fi j

(
(1−αi)

ni−1Ai exp
{
−Ei

RT

}(
ni
−∂αi

∂Ei
− (1−αi)

RT

))
, (40)

∂αi

∂Ei
=−

(
(1−ni)

(
−Ai

β
T exp

{
−Ei

RT

}
− Ai

β

Ei

R
Ei
{
−Ei

RT

}
+Ci

)) ni
1−ni

. . .

×
(
− Ai

βR
Ei
{
−Ei

RT

}
+

∂Ci

∂Ei

)
, (41)
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∂Ci

∂Ei
=

Ai

βR
Ei
{
−Ei

RT0

}
, (42)

∂ν j

∂ni
=m0Fi jAi exp

{
−Ei

RT

}
(1−αi)

ni−1 . . .

×
(

ni
−∂αi

∂ni
+(1−αi) log(1−αi)

)
, (43)

∂αi

∂ni
=−

(
((1−ni)(Bi +Ci))

1
1−ni . . .

×

−Bi +(1−ni)
∂Ci
∂ni
−Ci

(1−ni)2(Bi +Ci)
+

log{(1−ni)(Bi +Ci)}
(1−ni)2

 , (44)

∂Ci

∂ni
=− (1−α0)

1−ni

(1−ni)2 − (1−α0)
1−ni log(1−α0)

1−ni
, (45)

Bi =−
Ai

β

(
T exp

{
−Ei

RT

}
+

Ei

R
Ei
{
−Ei

RT

})
. (46)

Note that in Eq. 43, the last term on the right-hand side may pose some numerical issues because
of the indetermination. This is the case, for instance, after sufficiently large time after the reaction is
completed, or when the different reactants have distant activation energies leading to the reaction i being
completed much earlier than other ones. In both cases, αi→ 1 and we have to resolve (1−αi) log(1−αi)
for which the limit 0×∞ is of indeterminate form. This limit can be determined using l’Hôpital’s rule for
computing the limit of the ratio of two functions and is equal to 0. Practically speaking, in our numerical
implementation, every time one of the advancement of reaction factor αi reaches a value of εα = 1−105,
we set to zero the quantity (1−αi) log(1−αi).

Derivatives with respect to Fi j are trivial. Issues regarding the computation of the solution when
αi→ 1 in (1−αi)

ni−1 with 0 < ni < 1 that may arise are avoided because we assumed that ni > 1. Finally,
because the pyrolysis reactions are considered to be independent (parallel), we have ∂π/∂Ai = ∂πi/∂Ai =
∂ (ν j/γi j)/∂Ai (same for Ei, ni, Fi).
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