[en] Phytosterols (PSs) are insoluble in water and poorly soluble in oil, which hampers their potential as cholesterollevel regulator in human. To mitigate this problem, monoglycerides (MGs) were used to modulates the crys-tallization behavior of PSs. Therefore, the understanding on mixing behavior provides the insight into differentaspects of crystallization and the resultant effects. The effects on thermal, morphology, diffraction, and spec-troscopy behavior were investigated for binary mixtures of 11 different ratios (100:0 to 0:100 MGs:PSs). Thephase behavior of binary mixtures of commercial MGs and PSs exhibited complexity with the formation ofeutectic mixtures at 90:10 and 80:20 (MGs:PSs) combinations. These combinations revealed a single meltingprofile and reduced melting enthalpy, though after a month of storage at 5 °C. Conversely, two separate meltingregions were observed in others. Furthermore, powder X-ray diffraction (PXRD) analysis of selected combina-tions revealed a change in crystalline forms with changes in the peaks located between 18-19° (2θ) and 25-26°(2θ). Accordingly, Raman spectroscopy results revealed changes in intensities and peak shape. Therefore, thechange in crystalline forms or behavior correlated well to the change in thermal properties. Overall, the char-acterizations revealed the formation of eutectic mixtures between MGs and PSs at 90:10 and 80:20 (MGs:PSs) inwhich MGs modified the crystallization of PSs and changed the crystal forms thus, thermal behaviors. This studyprovides new insight into the mixing behavior of MGs and PSs which supports other research. Therefore, theresults of this study are beneficial for the improvement of formulation of phytosterols in food and pharma-ceutical products. Nonetheless, this study reveals a simple technique to alter crystal forms of phytosterolsthrough simple complexation with monoglycerides.
Disciplines :
Biotechnology
Author, co-author :
Bin Sintang, Mohd Dona
Danthine, Sabine ; Université de Liège - ULiège > Département GxABT > SMARTECH
Khalenkow, Dmitry
Tavernier, Iris
Tzompa Sosa, Daylan A.
Binti Julmohammad, Norliza
Van de Walle, Davy
Rimaux, Tom
Skirtach, Andre
Dewettinck, Koen
Language :
English
Title :
Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Acevedo, N.C., Franchetti, D., Analysis of co-crystallized free phytosterols with triacylglycerols as a functional food ingredient. Food Res. Int. 85 (2016), 104–112, 10.1016/j.foodres.2016.04.012.
Akashe, A., 2001. Plant sterol-emulsifier complexes. US 6,267,963 B1.
Alfutimie, A., Curtis, R., Tiddy, G.J.T., The phase behaviour of mixed saturated and unsaturated monoglycerides in water system. Colloids Surfaces A Physicochem. Eng. Asp. 465 (2015), 99–105, 10.1016/j.colsurfa.2014.10.033.
Alfutimie, A., Khudr, M.S., Al-Janabi, N., Alkhalaf, F.A., Tiddy, G.J.T., Palm and olive oils differentially alter phase structure and repulsive interaction between bilayers of gel phase formed by mixed monoglycerides. Colloids Surfaces A Physicochem. Eng. Asp., 579, 2019, 123682, 10.1016/j.colsurfa.2019.123682.
Bach, D., Wachtel, E., Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochim. Biophys. Acta - Biomembr. 1610 (2003), 187–197, 10.1016/S0005-2736(03)00017-8.
Bayés-García, L., Calvet, T., Cuevas-Diarte, M.À., Ueno, S., Sato, K., Phase Behavior of Binary Mixture Systems of Saturated-Unsaturated Mixed-Acid Triacylglycerols: Effects of Glycerol Structures and Chain–Chain Interactions. J. Phys. Chem. B 119 (2015), 4417–4427, 10.1021/acs.jpcb.5b00673.
Benesch, M.G.K., Lewis, R.N.A.H., Mannock, D.A., McElhaney, R.N., A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem. Phys. Lipids 188 (2015), 10–26, 10.1016/j.chemphyslip.2015.03.002.
Benesch, M.G.K., McElhaney, R.N., A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem. Phys. Lipids 195 (2016), 21–33, 10.1016/j.chemphyslip.2015.11.003.
Bin Sintang, M.D., Danthine, S., Brown, A., Van de Walle, D., Patel, A.R., Tavernier, I., Rimaux, T., Dewettinck, K., Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res. Int., 2017, 10.1016/j.foodres.2017.07.079.
Bin Sintang, Mohd Dona, Rimaux, T., Van de Walle, D., Dewettinck, K., Patel, A.R., Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Technol., 119, 2017, 10.1002/ejlt.201500517.
Bin Sintang, M.D., Rimaux, T., Van de Walle, D., Dewettinck, K., Patel, A.R., Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Technol., 2016, 10.1002/ejlt.201500517.
Bot, A., Agterof, W.G.M., Structuring of edible oils by mixtures of γ-oryzan with beta-sitosterol or related phytosterols. J. Am. Oil Chem. Soc. 83 (2006), 513–521, 10.1007/s11746-006-1234-7.
Chen, C.H., Terentjev, E.M., Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir 25 (2009), 6717–6724, 10.1021/la9002065.
Chen, C.H., Van Damme, I., Terentjev, E.M., Phase behavior of C18 monoglyceride in hydrophobic solutions. Soft Matter 5 (2009), 432–439, 10.1039/B813216J.
Cherukuvada, S., Kaur, R., Guru Row, T.N., Co-crystallization and small molecule crystal form diversity: from pharmaceutical to materials applications. CrystEngComm 18 (2016), 8528–8555, 10.1039/C6CE01835A.
Cherukuvada, S., Nangia, A., Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun. 50 (2014), 906–923, 10.1039/C3CC47521B.
Christiansen, L.I., Rantanen, J.T., Von Bonsdorff, A.K., Karjalainen, M., Yliruusi, J.K., A novel method of producing a microcrystalline beta-sitosterol suspension in oil. Eur. J. Pharm. Sci. 15 (2002), 261–269.
Costa, M.C., Sardo, M., Rolemberg, M.P., Coutinho, J.A.P., Meirelles, A.J.A., Ribeiro-Claro, P., Krähenbühl, M.A., The solid–liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids. Chem. Phys. Lipids 160 (2009), 85–97, 10.1016/j.chemphyslip.2009.05.004.
Engel, R., Schubert, H., Formulation of phytosterols in emulsions for increased dose response in functional foods. Innov. Food Sci. Emerg. Technol. 6 (2005), 233–237, 10.1016/j.ifset.2005.01.004.
Faiman, R., Raman spectroscopic studies of different forms of cholesterol and its derivatives in the crystalline state. Chem. Phys. Lipids 18 (1977), 84–104, 10.1016/0009-3084(77)90029-9.
Gater, D.L., Réat, V., Czaplicki, G., Saurel, O., Milon, A., Jolibois, F., Cherezov, V., Hydrogen bonding of cholesterol in the lipidic cubic phase. Langmuir 29 (2013), 8031–8038, 10.1021/la401351w.
Halling, K.K., Slotte, J.P., Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. Biochim. Biophys. Acta 1664 (2004), 161–171, 10.1016/j.bbamem.2004.05.006.
Han, L., Li, L., Li, B., Zhao, L., Liu, G.Q., Liu, X., Wang, X., Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. JAOCS, J. Am. Oil Chem. Soc. 91 (2014), 1783–1792, 10.1007/s11746-014-2526-y.
Hung, W.C., Lee, M.T., Chung, H., Sun, Y.T., Chen, H., Charron, N.E., Huang, H.W., Comparative Study of the Condensing Effects of Ergosterol and Cholesterol. Biophys. J. 110 (2016), 2026–2033, 10.1016/j.bpj.2016.04.003.
Inoue, T., Hisatsugu, Y., Yamamoto, R., Suzuki, M., Solid–liquid phase behavior of binary fatty acid mixtures. Chem. Phys. Lipids 127 (2004), 143–152, 10.1016/j.chemphyslip.2003.09.014.
Inoue, T., Hisatsugu, Y., Yamamoto, R., Suzuki, M., Solid–liquid phase behavior of binary fatty acid mixtures. Chem. Phys. Lipids 127 (2004), 143–152, 10.1016/j.chemphyslip.2003.09.014.
Larsson, K., On the structure of isotropic phases in lipid-water systems. Chem. Phys. Lipids 9 (1972), 181–195, 10.1016/0009-3084(72)90001-1.
Leeson, P., Flöter, E., Solidification behaviour of binary sitosteryl esters mixtures. Food Res. Int. 35 (2002), 983–991, 10.1016/S0963-9969(02)00164-3.
Liu, J., Conboy, J.C., Phase behavior of planar supported lipid membranes composed of cholesterol and 1,2-distearoyl-sn-glycerol-3-phosphocholine examined by sum-frequency vibrational spectroscopy. Vib. Spectrosc. 50 (2009), 106–115, 10.1016/j.vibspec.2008.09.004.
Luchini, A., Delhom, R., Cristiglio, V., Knecht, W., Wacklin-Knecht, H., Fragneto, G., Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers. Chem. Phys. Lipids, 227, 2020, 104873, 10.1016/j.chemphyslip.2020.104873.
Mackellar, A.J., Buckton, G., Newton, J.M., Chowdhry, B.Z., Orr, C.A., The controlled crystallisation of a model powder: 1. The effects of altering the stirring rate and the supersaturation profile, and the incorporation of a surfactant (poloxamer 188). Int. J. Pharm. 112 (1994), 65–78, 10.1016/0378-5173(94)90262-3.
Mannock, D.A., Benesch, M.G.K., Lewis, R.N.A.H., McElhaney, R.N., A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochim. Biophys. Acta - Biomembr. 1848 (2015), 1629–1638, 10.1016/j.bbamem.2015.04.009.
Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N., Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys. J. 91 (2006), 3327–3340, 10.1529/biophysj.106.084368.
McIntosh, T.J., The effect of cholesterol on the structure of phosphatidylcholine bilayers. BBA - Biomembr. 513 (1978), 43–58, 10.1016/0005-2736(78)90110-4.
McMullen, T.P., Lewis, R.N., McElhaney, R.N., Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. Biophys. J. 66 (1994), 741–752, 10.1016/S0006-3495(94)80850-1.
Moreau, R.A., Whitaker, B.D., Hicks, K.B., Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res., 2002, 10.1016/S0163-7827(02)00006-1.
Moreno-Calvo, E., Temelli, F., Cordoba, A., Masciocchi, N., Veciana, J., Ventosa, N., A new microcrystalline phytosterol polymorph generated using CO2-expanded solvents. Cryst. Growth Des. 14 (2014), 58–68, 10.1021/cg401068n.
Ojijo, N.K., Neeman, I., Eger, S., Shimoni, E., Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. J. Sci. Food Agric. 84 (2004), 1585–1593, 10.1002/jsfa.1831.
Perlman, D., 2013. Liquid crystalline phytosterol-glycerine complex for enhanced bioavailability and water dispersal. US 8,460,738 B1.
Pizzirusso, A., Peyronel, F., Co, E.D., Marangoni, A.G., Milano, G., Molecular Insights into the Eutectic Tripalmitin/Tristearin Binary System. J. Am. Chem. Soc. 140 (2018), 12405–12414, 10.1021/jacs.8b04729.
Radhakrishnan, A., McConnell, H.M., Thermal dissociation of condensed complexes of cholesterol and phospholipid. J. Phys. Chem. B 106 (2002), 4755–4762, 10.1021/jp013932d.
Ribeiro, A.P.B., Masuchi, M.H., Miyasaki, E.K., Domingues, M.A.F., Stroppa, V.L.Z., de Oliveira, G.M., Kieckbusch, T.G., Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52 (2015), 3925–3946, 10.1007/s13197-014-1587-0.
Ribeiro, H.S., Gupta, R., Smith, K.W., van Malssen, K.F., Popp, A.K., Velikov, K.P., Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols. Soft Matter 12 (2016), 5835–5846, 10.1039/C6SM00601A.
Salo, P., Wester, I., Low-fat formulations of plant stanols and sterols. Am. J. Cardiol., 96, 2005, 10.1016/j.amjcard.2005.03.021.
Sato, K., Crystallization behaviour of fats and lipids — a review. Chem. Eng. Sci. 56 (2001), 2255–2265, 10.1016/S0009-2509(00)00458-9.
Smith, E.A., Wang, W., Dea, P.K., Effects of cholesterol on phospholipid membranes: Inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC. Chem. Phys. Lipids 165 (2012), 151–159, 10.1016/j.chemphyslip.2011.12.006.
Srivastava, A., Zode, S.S., Pandey, J., Srivastava, K., Tandon, P., Ayala, A.P., Bansal, A.K., A novel approach to design febuxostat-salicylic acid eutectic system: evaluation and characterization. CrystEngComm 21 (2019), 310–320, 10.1039/C8CE01212A.
Szalontai, B., Phase transition in lipid multilayers induced by benzene. A Raman spectroscopic study. Biochem. Biophys. Res. Commun. 70 (1976), 947–950, 10.1016/0006-291X(76)90683-5.
Tantipolphan, R., Rades, T., Strachan, C.J., Gordon, K.C., Medlicott, N.J., Analysis of lecithin-cholesterol mixtures using Raman spectroscopy. J. Pharm. Biomed. Anal. 41 (2006), 476–484, 10.1016/j.jpba.2005.12.018.
Ubeyitogullari, A., Ciftci, O.N., Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Adv. 6 (2016), 108319–108327, 10.1039/C6RA20675A.
Vaikousi, H., Lazaridou, A., Biliaderis, C.G., Zawistowski, J., Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol-oil blends. J. Agric. Food Chem. 55 (2007), 1790–1798, 10.1021/jf0624289.
Vereecken, J., Meeussen, W., Foubert, I., Lesaffer, A., Wouters, J., Dewettinck, K., Comparing the crystallization and polymorphic behaviour of saturated and unsaturated monoglycerides. Food Res. Int. 42 (2009), 1415–1425, 10.1016/j.foodres.2009.07.006.
Verstringe, S., Dewettinck, K., Ueno, S., Sato, K., Triacylglycerol crystal growth: Templating effects of partial glycerols studied with synchrotron radiation microbeam x-ray diffraction. Cryst. Growth Des. 14 (2014), 5219–5226, 10.1021/cg5010209.
von Bonsdorff-Nikander, Anna, Karjalainen, M., Rantanen, J., Christiansen, L., Yliruusi, J., Physical stability of a microcrystalline β-sitosterol suspension in oil. Eur. J. Pharm. Sci. 19 (2003), 173–179, 10.1016/S0928-0987(03)00067-8.
von Bonsdorff-Nikander, A., Karjalainen, M., Rantanen, J., Christiansen, L., Yliruusi, J., Physical stability of a microcrystalline beta-sitosterol suspension in oil. Eur J Pharm Sci 19 (2003), 173–179, 10.1016/S0928-0987(03)00067-8.
Wojnarowska, Z., Smolka, W., Zotova, J., Knapik-Kowalczuk, J., Sherif, A., Tajber, L., Paluch, M., The effect of electrostatic interactions on the formation of pharmaceutical eutectics. Phys. Chem. Chem. Phys. 20 (2018), 27361–27367, 10.1039/C8CP05905E.
Yang, S.-T., Kreutzberger, A.J.B., Lee, J., Kiessling, V., Tamm, L.K., The role of cholesterol in membrane fusion. Chem. Phys. Lipids 199 (2016), 136–143, 10.1016/j.chemphyslip.2016.05.003.
Zychowski, L.M., Logan, A., Augustin, M.A., Kelly, A.L., Zabara, A., O'Mahony, J.A., Conn, C.E., Auty, M.A.E., Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions. J. Agric. Food Chem. 64 (2016), 6546–6554, 10.1021/acs.jafc.6b01722.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.