Paper published in a book (Scientific congresses and symposiums)
Reconstructing Words from Right-Bounded-Block Words
Fleischmann, Pamela; Lejeune, Marie; Manea, Florin et al.
2020In Jonoska, N.; Savchuk, D. (Eds.) Developments in Language Theory
Peer reviewed
 

Files


Full Text
bincoeff.pdf
Author preprint (389.22 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
combiinatorics; binomial coefficients; deck; reconstruction problem
Abstract :
[en] A reconstruction problem of words from scattered factors asks for the minimal information, like multisets of scattered factors of a given length or the number of occurrences of scattered factors from a given set, necessary to uniquely determine a word. We show that a word $w\in\{a,b\}^*$ can be reconstructed from the number of occurrences of at most $min(|w|_a,|w|_b)+1$ scattered factors of the form $a^ib$, where $|w|_a$ is the number of occurrences of the letter $a$ in $w$. Moreover, we generalize the result to alphabets of the form $\{1,…,q\}$ by showing that at most $\sum_{i=1}^{q−1}|w|_i(q−i+1)$ scattered factors suffices to reconstruct $w$. Both results improve on the upper bounds known so far. Complexity time bounds on reconstruction algorithms are also considered here.
Disciplines :
Computer science
Mathematics
Author, co-author :
Fleischmann, Pamela
Lejeune, Marie ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Manea, Florin
Nowotka, Dirk
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Reconstructing Words from Right-Bounded-Block Words
Publication date :
2020
Event name :
Developments in Language Theory
Event place :
Tampa, Florida, United States
Event date :
from 11-05-2020 to 15-05-2020
Audience :
International
Main work title :
Developments in Language Theory
Author, co-author :
Jonoska, N.
Savchuk, D.
Publisher :
Springer
ISBN/EAN :
978-3-030-48515-3
Collection name :
Lect. Notes Comput. Sci. 12086
Pages :
96-109
Peer reviewed :
Peer reviewed
Available on ORBi :
since 11 January 2021

Statistics


Number of views
48 (7 by ULiège)
Number of downloads
69 (5 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
1
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi