![]() ![]() | Gheeraert, F., Lejeune, M., & Leroy, J. (2021). S-adic characterization of minimal ternary dendric shifts. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2021.84 ![]() |
![]() ![]() | Lejeune, M. (2021). On the k-binomial equivalence of finite words and k-binomial complexity of infinite words [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/259266 |
![]() ![]() | Lejeune, M. (07 December 2020). Reconstructing words from right-bounded-block words [Paper presentation]. Combinatorics on words seminar series. |
![]() ![]() | Lejeune, M., Leroy, J., & Rigo, M. (2020). Computing the k-binomial complexity of the Thue–Morse word. Journal of Combinatorial Theory. Series A, 176. doi:10.1016/j.jcta.2020.105284 ![]() |
![]() ![]() | Lejeune, M., Rigo, M., & Rosenfeld, M. (2020). On the binomial equivalence classes of finite words. International Journal of Algebra and Computation. doi:10.1142/S0218196720500459 ![]() |
![]() ![]() | Lejeune, M., Rigo, M., & Rosenfeld, M. (2020). Templates for the k-binomial complexity of the Tribonacci word. Advances in Applied Mathematics, 112. doi:10.1016/j.aam.2019.101947 ![]() |
![]() ![]() | Fleischmann, P., Lejeune, M., Manea, F., Nowotka, D., & Rigo, M. (2020). Reconstructing Words from Right-Bounded-Block Words. In N. Jonoska & D. Savchuk, Developments in Language Theory (pp. 96-109). Springer. doi:10.1007/978-3-030-48516-0_8 ![]() |
![]() ![]() | Lejeune, M. (11 December 2019). A propos de la relation k-binomiale [Paper presentation]. Séminaire compréhensible des doctorants. |
![]() ![]() | Lejeune, M. (12 September 2019). Computing the k-binomial complexity of the Tribonacci word [Paper presentation]. WORDS 2019, Loughborough, United Kingdom. |
![]() ![]() | Lejeune, M., Rigo, M., & Rosenfeld, M. (September 2019). Templates for the k-binomial complexity of the Tribonacci word. Lecture Notes in Computer Science, 11682, 238-250. doi:10.1007/978-3-030-28796-2_19 ![]() |
![]() ![]() | Lejeune, M. (August 2019). Computing the k-binomial complexity of the Thue--Morse word [Paper presentation]. Developments in Language Theory, Varsovie, Poland. |
![]() ![]() | Lejeune, M. (08 July 2019). Computing the k-binomial complexity of the Thue--Morse word [Paper presentation]. Workshop on Numeration and Substitution, Vienne, Austria. |
![]() ![]() | Lejeune, M. (20 June 2019). Computing the k-binomial complexity of the Tribonacci word [Paper presentation]. Journées du Groupe de Travail SDA2 du GDR-IM, Orsay, France. |
![]() ![]() | Lejeune, M. (03 April 2019). Computing the k-binomial complexity of the Tribonacci word [Paper presentation]. Workshop post-thèse de Manon Stipulanti. |
![]() ![]() | Lejeune, M., Rigo, M., & Rosenfeld, M. (2019). Templates for the k-binomial complexity of the Tribonacci word. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/234215. |
![]() ![]() | Lejeune, M. (07 March 2019). About the k-binomial equivalence and the associated complexity [Paper presentation]. Ecole Jeunes Chercheurs en Informatique Mathématique, Marseille, France. |
![]() ![]() | Lejeune, M. (17 January 2019). Computing the k-binomial complexity of the Thue-Morse word [Paper presentation]. Séjour de recherches à Loughborough, Loughborough, United Kingdom. |
![]() ![]() | Lejeune, M., Leroy, J., & Rigo, M. (2019). Computing the k-binomial complextiy of the Thue-Morse word. Lecture Notes in Computer Science, 11647, 278-291. doi:10.1007/978-3-030-24886-4_21 ![]() |
![]() ![]() | Lejeune, M. (06 December 2018). Calculer la complexité k-binomiale du mot de Thue-Morse [Paper presentation]. Séminaire de Mathématiques Discrètes. |