Article for a general audience (Diverse speeches and writings)
Fundamentals to clustering high-dimensional data (3D point clouds)
Poux, Florent
2020
 

Files


Full Text
TDS_3D_point_cloud_clustering.pdf
Publisher postprint (2.45 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
point cloud; segmentation; automation; clustering; 3D reconstruction; Feature Extraction
Abstract :
[en] Clustering algorithms allow data to be partitioned into subgroups, or clusters, in an unsupervised manner. Intuitively, these segments group similar observations together. Clustering algorithms are therefore highly dependent on how one defines this notion of similarity, which is often specific to the field of application. Why unsupervised segmentation & clustering is the “bulk of AI”? What to look for when using them? How to evaluate performances? Explications and Illustration over 3D point cloud data.
Disciplines :
Earth sciences & physical geography
Computer science
Author, co-author :
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
Fundamentals to clustering high-dimensional data (3D point clouds)
Alternative titles :
[en] Fundamentals to clustering high-dimensional data (3D point clouds)
Publication date :
09 June 2020
Journal title :
Towards Data Science
Publisher :
Medium, New York, United States
Available on ORBi :
since 11 January 2021

Statistics


Number of views
127 (1 by ULiège)
Number of downloads
435 (5 by ULiège)

Bibliography


Similar publications



Contact ORBi