Costa, B.; Spaulding Neuromodulation Center, Spaulding Rehabilitation Center and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Ferreira, I.; Spaulding Neuromodulation Center, Spaulding Rehabilitation Center and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Trevizol, A.; Spaulding Neuromodulation Center, Spaulding Rehabilitation Center and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Thibaut, Aurore ; Université de Liège - ULiège > Consciousness-Coma Science Group
Fregni, F.; Spaulding Neuromodulation Center, Spaulding Rehabilitation Center and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Language :
English
Title :
Emerging targets and uses of neuromodulation for pain
Van Hecke O, Torrance N, Smith BH., Chronic pain epidemiology and its clinical relevance. Br J Anaesth. 2013;111:13–18
Lefaucheur J., Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain. 2016;157(Suppl):S81–9
Brunoni AR, Amadera J, Berbel B, et al. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14:1133–1145
Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:1–12
Bikson M, Rahman A, Datta A. Computational models of transcranial direct current stimulation. Clin EEG Neurosci. 2012;43:176–183
George MS, Nahas Z, Kozel FA, et al. Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectr. 2003;8:496–502+511
Rossi S, Hallett M, Rossini PM, et al. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–2039
Beekwilder JP, Beems T. Overview of the clinical applications of vagus nerve stimulation. J Clin Neurophysiol. 2010;27:130–138
Hord ED, Evans MS, Mueed S, et al. The effect of vagus nerve stimulation on migraines. J Pain. 2003;4:530–534
Mauskop A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia. 2005;25:82–86
Lenaerts ME, Oommen KJ, Couch JR, et al. Can vagus nerve stimulation help migraine? Cephalalgia. 2008;28:392–395
Ellrich J. Transcutaneous vagus nerve stimulation. Eur Neurol Rev. 2011;6:254–256
Clancy JA, Mary DA, Witte KK, et al. Non-invasive Vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7:871–877
Goadsby P, Grosberg B, Mauskop A, et al. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014;34:986–993
Straube A, Ellrich J, Eren O, et al. Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain. Italy; 2015;16:543
Boggio PS, Amancio EJ, Correa CF, et al. Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain Internet. 2009;25:691–695. DOI: 10.1097/AJP.0b013e3181af1414
Johnson MI, Mulvey MR, Bagnall AM. Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Cochrane Database of Systematic Reviews 2015, Issue 8. Art. No.: CD007264. DOI: 10.1002/14651858.CD007264.pub3
Hazime FA, De Freitas DG, Monteiro RL, et al. Analgesic efficacy of cerebral and peripheral electrical stimulation in chronic nonspecific low back pain: a randomized, double-blind, factorial clinical trial. BMC Musculoskelet Disord. 2015;16
Menezes IS, Cohen LG, Mello EA, et al. Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation Technol Neural Interface [Internet]. 2017. DOI:10.1111/ner.12717
Tosun A, Türe S, Askin A, et al. Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: A preliminary study. Top Stroke Rehabil. 2017;24:361–367
Moreno-Duarte I, Morse LR, Alam M, et al. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage. 2014;85:1003–1013
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci. 2015;42:2426–2437
Maeoka H, Matsuo A, Hiyamizu M, et al. Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: A study using electroencephalographic power spectrum analysis. Neurosci Lett. Elsevier Ireland Ltd; 2012;512:12–16
Rêgo GG, Lapenta OM, Marques LM, et al. Hemispheric dorsolateral prefrontal cortex lateralization in the regulation of empathy for pain. Neurosci Lett. 2015;594:12–16
Lorenz J, Minoshima S, Casey KL. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain. 2003;126:1079–1091
Boggio PS, Zaghi S, Fregni F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia. 2009;47:212–217
Arul-Anandam AP, Loo C, Martin D, et al. Chronic neuropathic pain alleviation after transcranial direct current stimulation to the dorsolateral prefrontal cortex. Brain Stimul Elsevier Inc. 2009;2:149–151
Damoiseaux JS, Rombouts SARB, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci [Internet]. 2006;103:13848–13853
Seminowicz DA, Moayedi M. The dorsolateral prefrontal cortex in acute and chronic pain. J Pain. 2017;18:1027–1035
Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci [Internet]. 2001;98:676–682
Hugdahl K, Raichle ME, Mitra A, et al. On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci Internet. 2015;9. DOI:10.3389/fnhum.2015.00430/abstract
Petrovic P, Kalso E, Petersson KM, et al. A prefrontal non-opioid mechanism in placebo analgesia. Pain. 2010;150:59–65
Lorenz J, Cross DJ, Minoshima S, et al. A unique representation of heat allodynia in the human brain. Neuron. 2002;35:383–393
Iadarola MJ, Berman KF, Zeffiro TA, et al. Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain. 1998;121:931–947
Seminowicz DA, Davis KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain. 2006;120:297–306
Freund W, Klug R, Weber F, et al. Perception and suppression of thermally induced pain: a fMRI study. Somatosens Mot Res. 2009;26:1–10
Sevel LS, Letzen JE, Staud R, et al. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connect [Internet]. 2016;6:357–364. DOI: 10.1089/brain.2015.0405
Clarke PJF, Browning M, Hammond G, et al. The causal role of the dorsolateral prefrontal cortex in the modification of attentional bias: evidence from transcranial direct current stimulation. Biol Psychiatry. 2014;76:946–952
Mariano TY, Van’t Wout M, Garnaat SL, et al. Transcranial Direct Current Stimulation (tDCS) targeting left dorsolateral prefrontal cortex modulates task-induced acute pain in healthy volunteers. Pain Med. 2016;17:737–745
Boggio PS, Zaghi S, Lopes M, et al. Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur J Neurol. 2008;15:1124–1130
Tremblay S, Lafleur LP, Proulx S, et al. The effects of bi-hemispheric M1-M1 transcranial direct current stimulation on primary motor cortex neurophysiology and metabolite concentration. Restor Neurol Neurosci. 2016;34:587–602
Naylor JC, Borckardt JJ, Marx CE, et al. Cathodal and anodal left prefrontal tDCS and the perception of control over pain. Clin J Pain [Internet]. 2014;30:693–700. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00002508-201408000-00007
Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:E1–24
Wang J, Wang Y, Hu Z, et al. Transcranial direct current stimulation of the dorsolateral prefrontal cortex increased pain empathy. Neuroscience. 2014;281:202–207
Fregni F, Gimenes R, Valle AC, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54:3988–3998
Egorova N, Yu R, Kaur N, et al. Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain. 2015;156:1342–1347
Lefaucheur J-P, André-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125:2150–2206
Borckardt JJ, Reeves ST, Frohman H, et al. Fast left prefrontal rTMS acutely suppresses analgesic effects of perceived controllability on the emotional component of pain experience. Pain. 2011;152:182–187
Graff-Guerrero A, González-Olvera J, Fresán A, et al. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Cogn Brain Res. 2005;25:153–160
Brighina F, De Tommaso M, Giglia F, et al. Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex. J Headache Pain. 2011;12:185–191
Fanselow EE. Central mechanisms of cranial nerve stimulation for epilepsy. Surg Neurol Int. 2012;3:S247–54
Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg. United States; 2011;115:1248–1255
Muller HHO, Moeller S, Lucke C, et al. Vagus Nerve Stimulation (VNS) and other augmentation strategies for Therapy-Resistant Depression (TRD): review of the evidence and clinical advice for use. Front Neurosci. Switzerland; 2018;12:239
Kong J, Fang J, Park J, et al. Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry. Switzerland; 2018;9:20
Yakunina N, Kim SS, Nam E-C. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. United States; 2017;20:290–300
Ben-Menachem E, Revesz D, Simon BJ, et al. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol. England; 2015;22:1260–1268
Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache. 2015/ 09/19; 2016;56:479–490
Kirchner A, Birklein F, Stefan H, et al. Left vagus nerve stimulation suppresses experimentally induced pain. Neurology. United States; 2000;55:1167–1171
Borckardt JJ, Bikson M, Frohman H, et al. A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J Pain. 2012;13:112–120
Busch V, Zeman F, Heckel A, et al. The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. United States; 2013;6:202–209
Ness TJ, Fillingim RB, Randich A, et al. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain. United States; 2000;86:81–85
Hawkins JL, Cornelison LE, Blankenship BA, et al. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. Pain Rep. United States; 2017;2:e628
Trimboli M, Al-Kaisy A, Andreou AP, et al. Non-invasive vagus nerve stimulation for the management of refractory primary chronic headaches: a real-world experience. Cephalalgia. England. 2017;38:1276-1285
Goadsby PJ, de Coo IF, Silver N, et al. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a randomized, double-blind, sham-controlled ACT2 study. Cephalalgia. England; 2018;38:959–969
Barbanti P, Grazzi L, Egeo G, et al. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J Headache Pain. Italy; 2015;16:61
Ruffoli R, Giorgi FS, Pizzanelli C, et al. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. 2010/ 12/21.2011;42:288–296
Ossipov MH, Dussor GO, Porreca F. Review series Central modulation of pain. J Clin Invest. 2010;120:3779–3787
Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia. United States; 1992;33:1005–1012
Hassert DL, Miyashita T, Williams CL. The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci. 2004/02/26; 2004;118:79–88
Chae J-H, Nahas Z, Lomarev M, et al. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res. England; 2003;37:443–455
Henry TR, Bakay RA, Votaw JR, et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia. 1998/09/17; 1998;39:983–990
Dorr AE, Debonnel G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J Pharmacol Exp Ther. United States; 2006;318:890–898
Miyashita T, Williams CL. Enhancement of noradrenergic neurotransmission in the nucleus of the solitary tract modulates memory storage processes. Brain Res. 2003/09/23; 2003;987:164–175
Crupi R, Cuzzocrea S. Neuroinflammation and immunity: a new pharmacological target in depression. CNS Neurol Disord Drug Targets. United Arab Emirates; 2016;15:464–476
Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol. United States; 2000;279:R141–7
Khasar SG, Green PG, Miao FJ-P, et al. Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat. Eur J Neurosci. France; 2003;17:909–915
Fregni F, Nitsche MA, Loo CK, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff Internet. 2015 cited 2017 Dec5;32:22–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25983531
Brosseau L, Yonge KA, Welch V, et al. Transcutaneous electrical nerve stimulation (TENS) for the treatment of rheumatoid arthritis in the hand. Cochrane Database Syst Rev [Internet]. 2003. DOI:10.1002/14651858.CD004377/abstract
Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–661
Chesterton LS, Foster NE, Wright CC, et al. Effects of TENS frequency, intensity and stimulation site parameter manipulation on pressure pain thresholds in healthy human subjects. Pain. 2003;106:73–80
Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–223
Brien ATO, Bertolucci F, Torrealba-Acosta G, et al. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis. Eur J Neurol. 2018;25:1–10
Dos Santos MD, Cavenaghi VB, Mac-Kay APMG, et al. Non-invasive brain stimulation and computational models in post-stroke aphasic patients: single session of transcranial magnetic stimulation and transcranial direct current stimulation. A randomized clinical trial. Sao Paulo Med J. 2017;135:475–480
Ngernyam N, Jensen MP, Arayawichanon P, et al. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126:382–390
Sivaramakrishnan A, Solomon JM, Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - a pilot randomized cross-over trial. J Spinal Cord Med. 2017;41:0268
Shiozawa P, Fregni F, Benseñor IM, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharmacol Internet. 2014;17:1443–1452. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24713139
Celnik P, Paik NJ, Vandermeeren Y, et al. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke. 2009;40:1764–1771
Giordano J, Bikson M, Kappenman ES, et al. Mechanisms and effects of transcranial direct current stimulation. Dose-Response. 2017;15:1–22
Norise C, Hamilton RH. Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: parallels, differences, and lessons learned. Front Hum Neurosci. 2017;10:1–16
Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: an updated report from an I.F.C.N. Committee Clin Neurophysiol. 2015;126:1071–1107
Brunoni AR, Fregni F. Clinical trial design in non-invasive brain stimulation psychiatric research. Int J Methods Psychiatr Res. 2011;20:e19–e30
Martens G, Lejeune N, O’Brien AT, et al. Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state Brain Stimul [Internet]. Elsevier Inc.; 2018. Available from: https://www.sciencedirect.com/science/article/pii/S1935861X18301463?via%3Dihub
Carvalho S, Leite J, Pinto CB, et al. Feasibility of remotely-supervised tDCS in a person with neuropathic pain due to spinal cord injury. J Spinal Cord Med. 2018;41:1–2
Leite J, Morales-Quezada L, Carvalho S, et al. Surface EEG-Transcranial Direct Current Stimulation (tDCS) closed-loop system. Int J Neural Syst. 2017;27:1750026
Da Graca-Tarragó M, Deitos A, Brietzke AP, et al. Electrical intramuscular stimulation in osteoarthritis enhances the inhibitory systems in pain processing at cortical and cortical spinal system. Pain Med. (United States); 2016;17:877–891