Sun: helioseismology; Sun: oscillations; Sun: fundamental parameters; Sun: interior; Astrophysics - Solar and Stellar Astrophysics
Abstract :
[en] Context. The Sun constitutes an excellent laboratory of fundamental physics. With the advent of helioseismology, we were able to probe its internal layers with unprecendented precision and thoroughness. However, the current state of solar modelling is still stained by tedious issues. One of these central problems is related to the disagreement between models computed with recent photospheric abundances and helioseismic constraints. The observed discrepancies raise questions on some fundamental ingredients entering the computation of solar and stellar evolution models. <BR /> Aims: We used solar evolutionary models as initial conditions for reintegrating their structure using Ledoux discriminant inversions. The resulting models are defined as seismic solar models, satisfying the equations of hydrostatic equilibrium. These seismic models will allow us to better constrain the internal structure of the Sun and provide complementary information to that of calibrated standard and non-standard models. <BR /> Methods: We used inversions of the Ledoux discriminant to reintegrate seismic solar models satisfying the equations of hydrostatic equilibrium. These seismic models were computed using various reference models with different equations of state, abundances, and opacity tables. We checked the robustness of our approach by confirming the good agreement of our seismic models in terms of sound speed, density, and entropy proxy inversions, as well as frequency-separation ratios of low-degree pressure modes. <BR /> Results: Our method allows us to determine the Ledoux discriminant profile of the Sun with an excellent accuracy and compute full profiles of this quantity. Our seismic models show an agreement with seismic data of ≈0.1% in sound speed, density, and entropy proxy after seven iterations in addition to an excellent agreement with the observed frequency-separation ratios. They surpass all standard and non-standard evolutionary models including ad hoc modifications of their physical ingredients that aim to reproduce helioseismic constraints. <BR /> Conclusions: The obtained seismic Ledoux discriminant profile, as well as the full consistent structure obtained from our reconstruction procedure paves the way for renewed attempts at constraining the solar modelling problem and the missing physical processes acting in the solar interior by breaking free from the hypotheses of evolutionary models.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Buldgen, Gaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Eggenberger, P.; Observatoire de Genève, Université de Genève, 51 Ch. Des Maillettes, 1290, Sauverny, Switzerland
Baturin, V. A.; Sternberg Astronomical Institute, Lomonosov Moscow State University, 119234, Moscow, Russia
Corbard, T.; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, France
Christensen-Dalsgaard, J.; Stellar Astrophysics Centre and Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
Salmon, Sébastien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Noels-Grötsch, Arlette ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Oreshina, A. V.; Sternberg Astronomical Institute, Lomonosov Moscow State University, 119234, Moscow, Russia
Scuflaire, Richard ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Language :
English
Title :
Seismic solar models from Ledoux discriminant inversions
Adelberger, E. G., García, A., Robertson, R. G. H., et al. 2011, Rev. Mod. Phys., 83, 195
Antia, H. M., & Basu, S. 1994 a, ApJ, 426, 801
Antia, H. M., & Basu, S. 1994 b, A&AS, 107, 421
Antia, H. M., & Basu, S. 2005, ApJ, 620, L129
Appourchaux, T., & Corbard, T. 2019, A&A, 624, A106
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Ayukov, S. V., & Baturin, V. A. 2011, J. Phys. Conf. Ser., 271, 012033
Ayukov, S. V., & Baturin, V. A. 2017, Astron. Rep., 61, 901
Bailey, J. E., Nagayama, T., Loisel, G. P., et al. 2015, Nature, 517, 3
Basu, S., & Antia, H. M. 1995, MNRAS, 276, 1402
Basu, S., & Antia, H. M. 1997, MNRAS, 287, 189
Basu, S., & Antia, H. M. 2008, Phys. Rep., 457, 217
Basu, S., & Thompson, M. J. 1996, A&A, 305, 631
Basu, S., Chaplin, W. J., Elsworth, Y., New, R., & Serenelli, A. M. 2009, ApJ, 699, 1403
Baturin, V. A., Ayukov, S. V., Gryaznov, V. K., et al. 2013, in Progress in Physics of the Sun and Stars: A New Era in Helio-and Asteroseismology, eds. H. Shibahashi, A. E. Lynas-Gray, et al., ASP Conf. Ser., 479, 11
Baturin, V. A., Däppen, W., Oreshina, A. V., Ayukov, S. V., & Gorshkov, A. B. 2019, A&A, 626, A108
Benomar, O., Takata, M., Shibahashi, H., Ceillier, T., & García, R. A. 2015, MNRAS, 452, 2654
Bergemann, M., & Serenelli, A. 2014, in Solar Abundance Problem, in Determination of Atmospheric Parameters of B-, A-, F-and G-Type Stars: Lectures from the School of Spectroscopic Data Analyses, eds. E. Niemczura, B. Smalley, & W. Pych (Cham: Springer International Publishing), 245
Cox, J., & Giuli, R. 1968, Principles of Stellar Structure: Applications to stars (Gordon and Breach)
Davies, G. R., Broomhall, A. M., Chaplin, W. J., Elsworth, Y., & Hale, S. J. 2014, MNRAS, 439, 2025
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Deheuvels, S., Doǧan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Dilke, F. W. W., & Gough, D. O. 1972, Nature, 240, 262
Di Mauro, M. P., Christensen-Dalsgaard, J., Rabello-Soares, M. C., & Basu, S. 2002, A&A, 384, 666
Dziembowski, W. A., Pamyatnykh, A. A., & Sienkiewicz, R. 1990, MNRAS, 244, 542
Dziembowski, W. A., Pamiatnykh, A. A., & Sienkiewicz, R. 1991, MNRAS, 249, 602
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9
Eggenberger, P., Buldgen, G., & Salmon, S. J. A. J. 2019, A&A, 626, L1
Elliott, J. R. 1996, MNRAS, 280, 1244
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585
Fossat, E., & Schmider, F. X. 2018, A&A, 612, L1
Fossat, E., Boumier, P., Corbard, T., et al. 2017, A&A, 604, A40
Gabriel, M., Noels, A., Scuflaire, R., & Boury, A. 1976, A&A, 47, 137
Gough, D. 1976, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, eds. V. Celebonovic, D. Gough, & W. Däppen, Am. Inst. Phys. Conf. Ser., 731, 119
Gough, D. O., & Kosovichev, A. G. 1993, MNRAS, 264, 522
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755
Gough, D. O., & Scherrer, P. H. 2001, in The solar interior, in The Century of Space Science, eds. J. A. M. Bleeker, J. Geiss, & M. C. E. Huber (Dordrecht: Springer, Netherlands), 1035
Gough, D. O., & Vorontsov, S. V. 1995, MNRAS, 273, 573
Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements, eds. N. Prantzos, E. Vangioni-Flam, & M. Casse, 15
Gryaznov, V. K., Ayukov, S. V., Baturin, V. A., et al. 2004, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, eds. V. Celebonovic, D. Gough, W. Däppen, et al., Am. Inst. Phys. Conf. Ser., 731, 147
Gryaznov, V. K., Ayukov, S. V., Baturin, V. A., et al. 2006, J. Phys. A: Math. General, 39, 4459
Gryaznov, V., Iosilevskiy, I., Fortov, V., et al. 2013, Contrib. Plasma Phys., 53, 392
Guzik, J. A., & Mussack, K. 2010, ApJ, 713, 1108
Guzik, J. A., Watson, L. S., & Cox, A. N. 2006, Mem Soc. Astron. Italiana, 77, 389
Howe, R. 2009, Liv. Rev. Sol. Phys., 6, 1
Iglesias, C. A. 2015, MNRAS, 450, 2
Iglesias, C. A., & Hansen, S. B. 2017, ApJ, 835, 284
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Irwin, A. W. 2012, Astrophysics Source Code Library [record ascl:1211.002]
Korzennik, S. G. 2005, ApJ, 626, 585
Korzennik, S. G. 2008 a, Astron. Nachr., 329, 453
Korzennik, S. G. 2008 b, J. Phys. Conf. Ser., 118, 012082
Kosovichev, A. G. 1993, MNRAS, 265, 1053
Kosovichev, A. G. 1999, J. Comput. Appl. Math., 109, 1
Kosovichev, A. G. 2011, Advances in Global and Local Helioseismology: An Introductory Review, eds. J.-P. Rozelot, & C. Neiner (Berlin: Springer Verlag), Lecture Notes Phys., 832, 3
Kosovichev, A. G., & Fedorova, A. V. 1991, Soviet Ast., 35, 507
Krishna Swamy, K. S. 1966, ApJ, 145, 174
Landi, E., & Testa, P. 2015, ApJ, 800, 110
Larson, T. P., & Schou, J. 2015, Sol. Phys., 290, 3221
Lund, M. N., Miesch, M. S., & Christensen-Dalsgaard, J. 2014, ApJ, 790, 121
Marchenkov, K., Roxburgh, I., & Vorontsov, S. 2000, MNRAS, 312, 39