Discovery of ANT3310, a Novel Broad-Spectrum Serine β-Lactamase Inhibitor of the Diazabicyclooctane Class, Which Strongly Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacterales and Acinetobacter baumannii
Davies, David T.; Leiris, Simon; Zalacain, Magdalenaet al.
2020 • In Journal of Medicinal Chemistry, 63 (24), p. 15802–15820
Includes synthesis and characterization of key compounds, experimental procedures for enzyme inhibition assays, in vitro antimicrobial susceptibility testing, efficacy studies, protein crystallization, and collection and processing of diffraction data (with resulting statistics)
[en] The diazabicyclooctanes (DBOs) are a class of serine β-lactamase (SBL) inhibitors that use a strained urea moiety as the warhead to react with the active serine residue in the active site of SBLs. The first in-class drug, avibactam, as well as several other recently approved DBOs (e.g., relebactam) or those in clinical development (e.g., nacubactam and zidebactam) potentiate activity of β-lactam antibiotics, to various extents, against carbapenem-resistant Enterobacterales (CRE) carrying class A, C, and D SBLs; however, none of these are able to rescue the activity of β-lactam antibiotics against carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO “critical priority pathogen” producing class D OXA-type SBLs. Herein, we describe the chemical optimization and resulting structure–activity relationship, leading to the discovery of a novel DBO, ANT3310, which uniquely has a fluorine atom replacing the carboxamide and stands apart from the current DBOs in restoring carbapenem activity against OXA-CRAB as well as SBL-carrying CRE pathogens.
Disciplines :
Life sciences: Multidisciplinary, general & others Microbiology Biochemistry, biophysics & molecular biology Chemistry
Author, co-author :
Davies, David T.
Leiris, Simon
Zalacain, Magdalena
Sprynski, Nicolas
Castandet, Jérôme
Bousquet, Justine
Lozano, Clarisse
Llanos, Agustina
Alibaud, Laethitia
Vasa, Srinivas
Pattipati, Ramesh
Valige, Ravindar
Kummari, Bhaskar
Pothukanuri, Srinivasu
De Piano, Cyntia
Morrissey, Ian
Holden, Kirsty
Warn, Peter
Marcoccia, Francesca
Benvenuti, Manuela
Pozzi, Cecilia
Tassone, Giusy
Mangani, Stefano
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > UR InBioS - Centre d'ingénierie des protéines
Discovery of ANT3310, a Novel Broad-Spectrum Serine β-Lactamase Inhibitor of the Diazabicyclooctane Class, Which Strongly Potentiates Meropenem Activity against Carbapenem-Resistant Enterobacterales and Acinetobacter baumannii
O'Neill, J. Review on Antimicrobial Resistance, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 2016. For this seminal review of antibacterial resistance, see https://amr-review.org/home.html (accessed May 5, 2020).
Bush, K.; Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969-976, 10.1128/AAC.01009-09
De Koning, G. A. J.; Tio, D.; Coster, J. F.; Coutinho, R. A.; Ansink-Schipper, M. C. The combination of clavulanic acid and amoxycillin (Augmentin) in the treatment of patients infected with penicillinase producing gonococci. J. Antimicrob. Chemother. 1981, 8, 81, 10.1093/jac/8.1.81
Paterson, D. L.; Bonomo, R. A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev. 2005, 18, 657-686, 10.1128/CMR.18.4.657-686.2005
Shirley, M. Ceftazidime-Avibactam: A review in the treatment of serious gram-negative bacterial infections. Drugs 2018, 78, 675-692, 10.1007/s40265-018-090210.1007/s40265-018-0902-x
Khan, A. U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017, 17, 101, 10.1186/s12866-017-1012-8
Somboro, A. M.; Osei Sekyere, J.; Amoako, D. G.; Essack, S. Y.; Bester, L. A. Diversity and proliferation of metallo-β-lactamases; a clarion call for clinically effective metallo-β-lactamase inhibitors. Appl. Environ. Microbiol. 2018, 84, e00698 10.1128/AEM.00698-18
Griffith, D. C.; Sabet, M.; Tarazi, Z.; Lomovskaya, O.; Dudley, M. N. Pharmacokinetics/phamacodynamis of vaborbactam, a novel β-lactamase inhibitor, in combination with meropenem. Antimicrob. Agents Chemother. 2018, 63, e01659-18, 10.1128/aac.01659-18
Liu, B.; Trout, R. E. L.; Chu, G.-H.; McGarry, D.; Jackson, R. W.; Hamrick, J. C.; Daigle, D. M.; Cusick, S. M.; Pozzi, C.; De Luca, F.; Benvenuti, M.; Mangani, S.; Docquier, J.-D.; Weiss, W. J.; Pevear, D. C.; Xerri, L.; Burns, C. J. Discovery of taniborbactam (VNRX-5133): A broad-spectrum serine-and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 2020, 63, 2789-2801, 10.1021/acs.jmedchem.9b01518
Tsivkovski, R.; Totrov, M.; Lomovskaya, O. Biochemical characterization of QPX7728, a new ultra-broad-spectrum β-lactamase inhibitor of serine and metallo-β-lactamases. Antimicrob. Agents Chemother. 2020, 64, e00130 10.1128/AAC.00130-20
Lomovskaya, O.; Tsivkovski, R.; Nelson, K.; Rubio-Aparicio, D.; Sun, D.; Totrov, M.; Dudley, M. N. Spectrum of β-lactamase inhibition by the cyclic boronate QPX7728, an ultra-broad-spectrum β-lactamase inhibitor of serine and metallo β-lactamases: Enhancement of activity of multiple antibiotics against isogenic strains expressing single β-lactamases. Antimicrob. Agents Chemother. 2020, 64, doi. 10.1128/AAC.00212-20
Hecker, S. J.; Reddy, K. R.; Lomovskaya, O.; Griffith, D. C.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Sun, D.; Sabet, M.; Tarazi, Z.; Parkinson, J.; Totrov, M.; Boyer, S. H.; Glinka, T. W.; Pemberton, O. A.; Chen, Y.; Dudley, M. N. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J. Med. Chem. 2020, 63, 7491-7507, 10.1021/acs.jmedchem.9b01976
Papp-Wallace, K. M. The latest advances in β-lactam/ β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin. Pharmacother. 2019, 20, 2169-2184, 10.1080/14656566.2019.1660772
Wong, D.; Van Duin, D. Novel β-lactamase inhibitors: unlocking their potential in therapy. Drugs 2017, 77, 615-628, 10.1007/s40265-017-0725-1
Mushtaq, S.; Vickers, A.; Woodford, N.; Haldimann, A.; Livermore, D. M. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2019, 74, 953-960, 10.1093/jac/dky522
Bradford, P. A.; Huband, M. D.; Stone, G. G. A systematic approach to the selection of the appropriate avibactam concentration for use with ceftazidime in broth microdilution susceptibility testing. Antimicrob. Agents Chemother. 2018, 62, e00223-18, 10.1128/AAC.00223-18
Zhang, Y.; Kashikar, A.; Brown, C. A.; Denys, G.; Bush, K. Unusual Escherichia coli PBP3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob. Agents Chemother. 2017, 61, e00389-17, 10.1128/AAC.00389-17
Alm, R. A.; Johnstone, M. R.; Lahiri, S. D. Characterisation of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J. Antimicrob. Chemother. 2015, 70, 1420-1428, 10.1093/jac/dku568
Shields, R. K.; Nguyen, M. H.; Chen, L.; Press, E. G.; Kreiswirth, B. N.; Clancy, C. J. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17, 10.1128/AAC.02497-17
Global Priority List of Antibiotic-Resistant Bacterial to guide Research, Discovery and Development of New Antibiotics; World Health Organisation, see https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed May 5, 2020).
Ball, M.; Boyd, A.; Ensor, G. J.; Evans, M.; Golden, M.; Linke, S. R.; Milne, D.; Murphy, R.; Telford, A.; Kalyan, Y.; Lawton, G. R.; Racha, S.; Ronsheim, M.; Zhou, S. H. Development of a manufacturing route to avibactam, β-lactamase inhibitor. Org. Process Res. Dev. 2016, 20, 1799-1805, 10.1021/acs.oprd.6b00268
Dondoni, A.; Catozzi, N.; Marra, A. Stereoselective synthesis of alpha-and beta-L-C-fucosyl aldehydes and their utility in the assembly of C-fucosides of biological relevance. J. Org. Chem. 2004, 69, 5023-5036, 10.1021/jo049406a
Lui, J.-B.; Xu, X.-H.; Qing, F.-L. Silver-mediated oxidative trifluoromethylation of alcohols to alkyl trifluoromethyl ethers. Org. Lett. 2015, 17, 5048-5051, 10.1021/acs.orglett.5b02522
Chen, D.; Li, Y.; Zhao, M.; Tan, W.; Li, X.; Savidge, T.; Guo, W.; Fan, X. Effective lead optimisation targeting the displacement of bridging receptor-ligand water molecules. Phys. Chem. Chem. Phys. 2018, 20, 24399-24407, 10.1039/c8cp04118k
Van Zandt, M. C.; Jagdmann, G. E.; Whitehouse, D. L.; Ji, M.; Savoy, J.; Potapova, O.; Cousido-Siah, A.; Mitschler, A.; Howard, E. I.; Pyle, A. M.; Podjarny, A. D. Discovery of N-Substituted 3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acids as highly potent third-generation inhibitors of arginase I and II. J. Med. Chem. 2019, 62, 8164-8177, 10.1021/acs.jmedchem.9b00931
Mitcheltree, M. J.; Li, D.; Achab, A.; Beard, A.; Chakravarthy, K.; Cheng, M.; Cho, H.; Eangoor, P.; Fan, P.; Gathiaka, S.; Kim, H.-Y.; Lesburg, C. A.; Lyons, T. W.; Martinot, T. A.; Miller, J. R.; McMinn, S.; O'Neil, J.; Palani, A.; Palte, R. L.; Saurí, J.; Sloman, D. L.; Zhang, H.; Cumming, J. N.; Fischer, C. Discovery and optimisation of rationally designed bicyclic inhibitors of human arginase to enhance cancer immunotherapy. ACS Med. Chem. Lett. 2020, 11, 582-588, 10.1021/acsmedchemlett.0c00058
Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.-P.; Touati, A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 37, 587-604, 10.1007/s10096-017-3112-7
Stewart, A.; Harris, P.; Henderson, A.; Paterson, D. Treatment of infections by OXA-48-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e01195-18, 10.1128/aac.01195-18
Mushtaq, S.; Vickers, A.; Woodford, N.; Livermore, D. M. WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases. J. Antimicrob. Chemother. 2017, 72, 1688-1695, 10.1093/jac/dkz03510.1093/jac/dkx035
Papp-Wallace, K. M.; Nguyen, N. Q.; Jacobs, M. R.; Bethel, C. R.; Barnes, M. D.; Kumar, V.; Bajaksouzian, S.; Rudin, S. D.; Rather, P. N.; Bhavsar, S.; Ravikumar, T.; Deshpande, P. K.; Patil, V.; Yeole, R.; Bhagwat, S. S.; Patel, M. V.; Van den Akker, F.; Bonomo, R. A. Strategic approaches to overcome resistance against gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: Activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. J. Med. Chem. 2018, 61, 4067-4086, 10.1021/acs.jmedchem.8b00091
Pagès, J.-M.; Winterhalter, M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893-903, 10.1038/nmicro1994
Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337-418, 10.1128/CMR.00117-14
Richter, M. F.; Drown, B. S.; Riley, A. P.; Garcia, A.; Shirai, T.; Svec, R. L.; Hergenrother, P. J. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 2017, 545, 299-304, 10.1038/nature22308
Davies, D.; Pearson, M. J. Synthesis of novel fused lactams by intramolecular 1,3-dipolar cycloadditions. Part 1. Tricyclic Triazoles. J. Chem. Soc., Perkin Trans. 1 1981, 2539-2543, 10.1039/p19810002539
Sanchez-Fernandez, E. M.; Navo, C. D.; Martínez-Sáez, N.; Gonçalves-Pereira, R.; Somovilla, V. J.; Avenoza, A.; Busto, J. H.; Bernardes, G. J. L.; Jiménez-Osés, G.; Corzana, F.; Fernández, J. M. G.; Mellet, C. O.; Peregrina, J. M. Tn antigen mimics based on sp2-iminosugars with affinity for an anti-MUC antibodies. Org. Lett. 2016, 18, 3890-3893, 10.1021/acs.orglett.6b01899
Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects on Oxygen; Springer-Verlag: Berlin, 1983.
Juaristi, E.; Cuevas, G. Recent studies of the anomeric effect. Tetrahedron 1992, 48, 5019-5087, 10.1016/S0040-4020(01)90118-8
Perrin, C. L.; Young, D. B. Is there steroelectronic control in hydrolysis of cyclic guanidinium Ions?. J. Am. Chem. Soc. 2001, 123, 4446-4450, 10.1021/ja003672y
Bredt, J.; Houben, J.; Levy, P. Uber isomere dehydrocamphersauren, lauronolsauren und bihydrolauro-lacton. Ber. Dtsch. Chem. Ges. 1902, 35, 1286-1292, 10.1002/cber.19020350215
Sabet, M.; Tarazi, Z.; Nolan, T.; Parkinson, J.; Rubio-Aparicio, D.; Lomovskaya, O.; Dudley, M. N.; Griffith, D. C. Activity of meropenem-vaborbactam in mouse models of infection due to KPC-producing carbapenem-resistant Enterobacteriaceae (CRE). Antimicrob. Agents Chemother. 2017, 62, e01446-17, 10.1128/AAC.01446-17
Lahiri, S. D.; Mangani, S.; Jahić, H.; Benvenuti, M.; Durand-Reville, T. F.; De Luca, F.; Ehmann, D. E.; Rossolini, G. M.; Alm, R. A.; Docquier, J.-D. Molecular basis of selective inhibition and slow reversibility of avibactam against Class D carbapenemases: A Structure-Guided Study of OXA-24 and OXA-48. ACS Chem. Biol. 2015, 10, 591-600, 10.1021/cb500703p
Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, J.-P.; Mobashery, S. Critical involvement of a carbamylated lysine in catalytic function of Class D β-lactamases. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14280-14285, 10.1073/pnas.241442898
Docquier, J.-D.; Mangani, S. Structure-function relationships of Class D carbapenemases. Curr. Drug Targets 2016, 17, 1061-1071, 10.2174/1389450116666150825115824
Docquier, J.-D.; Calderone, V.; De Luca, F.; Benvenuti, M.; Giuliani, F.; Bellucci, L.; Tafi, A.; Nordmann, P.; Botta, M.; Rossolini, G. M.; Mangani, S. Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among Class D carbapenemases. Chem. Biol. 2009, 16, 540-547, 10.1016/j.chembiol.2009.04.010
Durand-Réville, T. F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Velez-Vega, C.; Olivier, N. B.; McLaughlin, R.; Gao, N.; Thresher, J.; Palmer, T.; Andrews, B.; Giacobbe, R. A.; Newman, J. V.; Ehmann, D. E.; de Jonge, B.; O'Donnell, J.; Mueller, J. P.; Tommasi, R. A.; Miller, A. A. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 1-10, 10.1038/nmicrobiol.2017.104