[en] Graphene is a promising substrate for future spintronic devices owing to its remarkable electronic mobility and low spin-orbit coupling. Hanle precession in spin-valve devices is commonly used to evaluate spin diffusion and spin lifetime. In this work, we demonstrate that this method is no longer accurate when the distance between the inner and outer electrodes is smaller than 6 times the spin diffusion length, leading to errors as large as 50% for the calculation of the spin figures of merit of graphene-based devices. We suggest simple but efficient approaches to circumvent this limitation by addressing a revised version of the Hanle fit function. Complementarily, we provide clear guidelines for the design of four-terminal nonlocal spin valves suitable for the flawless determination of the spin lifetime and the spin diffusion coefficient.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Fourneau, Emile ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Language :
English
Title :
Roadmap for the Design of All Ferromagnetic Four-Terminal Spin Valves and the Extraction of Spin Diffusion Length
Publication date :
19 March 2021
Journal title :
Physical Review Applied
eISSN :
2331-7019
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B. J. van Wees, and I. J. Vera-Marun, Colloquium: Spintronics in graphene and other two-dimensional materials, Rev. Mod. Phys. 92, 21003 (2020). 0034-6861 10.1103/RevModPhys.92.021003
W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Graphene spintronics, Nat. Nanotechnol. 9, 794 (2014). 1748-3387 10.1038/nnano.2014.214
M. H. D. Guimarães, P. J. Zomer, J. C. Brant, N. Tombros, and B. J. V. Wees, Controlling Spin Relaxation in Hexagonal BN-Encapsulated Graphene with a Transverse Electric Field, Phys. Rev. Lett. 113, 086602 (2014). 0031-9007 10.1103/PhysRevLett.113.086602
M. Drögeler, C. Franzen, F. Volmer, T. Pohlmann, L. Banszerus, M. Wolter, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices, Nano Lett. 16, 3533 (2016). 1530-6984 10.1021/acs.nanolett.6b00497
J. Ingla-Aynés, R. J. Meijerink, and B. J. V. Wees, Eighty-eight percent directional guiding of spin currents with (Equation presented) relaxation length in bilayer graphene using carrier drift, Nano Lett. 16, 4825 (2016). 1530-6984 10.1021/acs.nanolett.6b01004
Z. M. Gebeyehu, S. Parui, J. F. Sierra, M. Timmermans, M. J. Esplandiu, S. Brems, C. Huyghebaert, K. Garello, M. V. Costache, and S. O. Valenzuela, Spin communication over (Equation presented) long channels of chemical vapor deposited graphene on (Equation presented), 2D Mater. 6, 034003 (2019). 2053-1583 10.1088/2053-1583/ab1874
D. Huertas-Hernando, F. Guinea, and A. Brataas, Spin-Orbit-Mediated Spin Relaxation in Graphene, Phys. Rev. Lett. 103, 146801 (2009). 0031-9007 10.1103/PhysRevLett.103.146801
B. Raes, J. E. Scheerder, M. V. Costache, F. Bonell, J. F. Sierra, J. Cuppens, J. Van De Vondel, and S. O. Valenzuela, Determination of the spin-lifetime anisotropy in graphene using oblique spin precession, Nat. Commun. 7, 1 (2016). 2041-1723 10.1038/ncomms11444
B. Raes, A. W. Cummings, F. Bonell, M. V. Costache, J. F. Sierra, S. Roche, and S. O. Valenzuela, Spin precession in anisotropic media, Phys. Rev. B 95, 085403 (2017). 2469-9950 10.1103/PhysRevB.95.085403
M. Johnson and R. H. Silsbee, Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface, Phys. Rev. B 37, 5312 (1988). 0163-1829 10.1103/PhysRevB.37.5312
X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Electrical detection of spin transport in lateral ferromagnet-semiconductor devices, Nat. Phys. 3, 197 (2007). 1745-2473 10.1038/nphys543
F. Volmer, M. Drögeler, E. Maynicke, N. von den Driesch, M. L. Boschen, G. Güntherodt, and B. Beschoten, Role of (Equation presented) barriers for spin and charge transport in (Equation presented)/graphene nonlocal spin-valve devices, Phys. Rev. B 88, 161405 (2013). 1098-0121 10.1103/PhysRevB.88.161405
E. Sosenko, H. Wei, and V. Aji, Effect of contacts on spin lifetime measurements in graphene, Phys. Rev. B 89, 245436 (2014). 1098-0121 10.1103/PhysRevB.89.245436
F. Volmer, M. Drögeler, T. Pohlmann, G. Güntherodt, and C. Stampfer, Contact-induced charge contributions to non-local spin transport measurements in (Equation presented)/(Equation presented)/graphene devices, 2D Mater. 2, 024001 (2015). 2053-1583 10.1088/2053-1583/2/2/024001
M. V. Kamalakar, A. Dankert, P. J. Kelly, and S. P. Dash, Inversion of spin signal and spin filtering in ferromagnet-hexagonal boron nitride-graphene van der Waals heterostructures, Sci. Rep. 6, 21168 (2016). 2045-2322 10.1038/srep21168
G. Stecklein, P. A. Crowell, J. Li, Y. Anugrah, Q. Su, and S. J. Koester, Contact-Induced Spin Relaxation in Graphene Nonlocal Spin Valves, Phys. Rev. Appl. 6, 054015 (2016). 2331-7019 10.1103/PhysRevApplied.6.054015
W. Amamou, Z. Lin, J. V. Baren, S. Turkyilmaz, J. Shi, and R. K. Kawakami, Contact induced spin relaxation in graphene spin valves with (Equation presented) and (Equation presented) tunnel barriers, APL Mater. 4, 032503 (2016). 2166-532X 10.1063/1.4943681
T. Maassen, I. J. Vera-Marun, M. H. D. Guimar, and B. J. van Wees, Contact-induced spin relaxation in hanle spin precession measurements, Phys. Rev. B 86, 235408 (2012). 1098-0121 10.1103/PhysRevB.86.235408
H. Idzuchi, A. Fert, and Y. Otani, Revisiting the measurement of the spin relaxation time in graphene-based devices, Phys. Rev. B 91, 241407 (2015). 1098-0121 10.1103/PhysRevB.91.241407
M. Gurram, S. Omar, and B. J. V. Wees, Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures, Nat. Commun. 8, 1 (2017). 2041-1723 10.1038/s41467-017-00317-w
E. Fourneau, A. V. Silhanek, and N. D. Nguyen, Origin of the Giant Spin-Detection Efficiency in Tunnel-Barrier-Based Electrical, Phys. Rev. Appl. 14, 024020 (2020). 2331-7019 10.1103/PhysRevApplied.14.024020
M. Wojtaszek, I. J. Vera-Marun, and B. J. van Wees, Transition between one-dimensional and zero-dimensional spin transport studied by Hanle precession, Phys. Rev. B 89, 245427 (2014). 1098-0121 10.1103/PhysRevB.89.245427
M. Drögeler, F. Volmer, C. Stampfer, and B. Beschoten, Simulations on the influence of spatially varying spin transport parameters on the measured spin lifetime in graphene non-local spin valves, Phys. Status Solidi (B) 254, 1700293 (2017). 0370-1972 10.1002/pssb.201700293
M. Vila, J. H. Garcia, A. W. Cummings, S. R. Power, C. W. Groth, X. Waintal, and S. Roche, Nonlocal Spin Dynamics in the Crossover from Diffusive to Ballistic Transport, Phys. Rev. Lett. 124, 196602 (2020). 0031-9007 10.1103/PhysRevLett.124.196602
A. Spiesser, H. Saito, Y. Fujita, S. Yamada, K. Hamaya, S. Yuasa, and R. Jansen, Giant Spin Accumulation in Silicon Nonlocal Spin-Transport Devices, Phys. Rev. Appl. 8, 1 (2017). 2331-7019 10.1103/PhysRevApplied.8.064023
Spiesser et al. experimentally test the correction factor in four-terminal devices with a highly doped silicon channel. This is acceptable under the hypothesis of a homogeneous current-density distribution along the contact width. In two-dimensional materials, a substantial current-crowding effect at the injector implies highly inhomogeneous current distributions unless the tunnel barrier is resistive enough, which is indeed the case for most of the two-dimensional-material spin-valve devices reported in the literature.
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. V. Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448, 571 (2007). 0028-0836 10.1038/nature06037
C. Jozsa, M. Popinciuc, N. Tombros, H. T. Jonkman, B. J. V. Wees, and C. Jo, Electronic Spin Drift in Graphene Field-Effect Transistors, Phys. Rev. Lett. 100, 236603 (2008). 0031-9007 10.1103/PhysRevLett.100.236603
W. Han, K. Pi, K. M. Mccreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Tunneling Spin Injection Into Single Layer Graphene, Phys. Rev. Lett. 105, 167202 (2010). 0031-9007 10.1103/PhysRevLett.105.167202
W. Han, K. M. Mccreary, K. Pi, W. H. Wang, Y. Li, H. Wen, J. R. Chen, and R. K. Kawakami, Spin transport and relaxation in graphene, J. Magn. Magn. Mater. 324, 369 (2012). 0304-8853 10.1016/j.jmmm.2011.08.001
I. Neumann, M. V. Costache, G. Bridoux, J. F. Sierra, and S. O. Valenzuela, Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers, Appl. Phys. Lett. 112401, 112401 (2013). 0003-6951 10.1063/1.4820586
A. J. Berger, M. R. Page, H. Wen, K. M. Mccreary, V. P. Bhallamudi, K. Roland, and P. C. Hammel, Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements, Appl. Phys. Lett. 107, 142406 (2015). 0003-6951 10.1063/1.4932673
M. H. D. Guimarães, J. J. van den Berg, I. J. Vera-Marun, P. J. Zomer, and B. J. van Wees, Spin transport in graphene nanostructures, Phys. Rev. B 90, 235428 (2014). 1098-0121 10.1103/PhysRevB.90.235428
N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. V. Wees, Anisotropic Spin Relaxation in Graphene, Phys. Rev. Lett. 101, 046601 (2008). 0031-9007 10.1103/PhysRevLett.101.046601
M. Popinciuc, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. V. Wees, Electronic spin transport in graphene field-effect transistors, Phys. Rev. B 80, 214427 (2009). 1098-0121 10.1103/PhysRevB.80.214427
C. Józsa, M. Popinciuc, N. Tombros, H. T. Jonkman, and B. J. V. Wees, Controlling the efficiency of spin injection into graphene by carrier drift, Phys. Rev. B 79, 081402(R) (2009). 1098-0121 10.1103/PhysRevB.79.081402
M. H. D. Guimarães, A. Veligura, P. J. Zomer, T. Maassen, N. Tombros, and B. J. V. Wees, Spin transport in high-quality suspended graphene devices, Nano Lett. 12, 3512 (2012). 1530-6984 10.1021/nl301050a
P. J. Zomer, M. H. D. Guimarães, N. Tombros, and B. J. van Wees, Long-distance spin transport in high-mobility graphene on hexagonal boron nitride, Phys. Rev. B. 86, 161416(R) (2012). 1098-0121 10.1103/PhysRevB.86.161416
M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash, Long distance spin communication in chemical vapour deposited graphene, Nat. Commun. 6, 1 (2015). 2041-1723 10.1038/ncomms7766
W. S. Torres, J. F. Sierra, L. A. Benítez, F. Bonell, M. V. Costache, and S. O. Valenzuela, Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures, 2D Mater. 4, 041008 (2017). 2053-1583 10.1088/2053-1583/aa8823
M. V. Kamalakar, J. Bergsten, T. Ive, and S. P. Dash, Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride, Sci. Rep. 4, 6146 (2014). 2045-2322 10.1038/srep06146
S. Singh, J. Katoch, T. Zhu, R. J. Wu, A. S. Ahmed, W. Amamou, D. Wang, K. A. Mkhoyan, and R. K. Kawakami, Strontium oxide tunnel barriers for high quality spin transport and large spin accumulation in graphene, Nano Lett. 17, 7578 (2017). 1530-6984 10.1021/acs.nanolett.7b03543
A. L. Friedman, C. H. Li, J. T. Robinson, and B. T. Jonker, Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Commun. 5, 3161 (2014). 2041-1723 10.1038/ncomms4161
I. Žutíc, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004). 0034-6861 10.1103/RevModPhys.76.323
The absence of more than two values for (Equation presented) in spin-valve measurements implies that external electrodes have no impact only if one can prove that all configurations have been probed. For example, only two values for (Equation presented) will be observed if the external electrodes are narrow enough to sustain a large in-plane magnetic field or if each outer electrode has a coercive field similar to that of the closest inner electrode [(Equation presented) and (Equation presented)].
T. Maassen, F. K. Dejene, M. H. D. Guimarães, C. Jozsa, and B. J. van Wees, Comparison between charge and spin transport in few-layer graphene, Phys. Rev. B 83, 115410 (2011). 1098-0121 10.1103/PhysRevB.83.115410
Using the four variations (Equation presented), (Equation presented), (Equation presented), and (Equation presented), we maintain the orientation of inner electrodes ((Equation presented) and (Equation presented)) and take the four different configurations for the outer electrodes ((Equation presented) and (Equation presented)). As a result, in half of the configurations (Equation presented) injects spin ((Equation presented) and (Equation presented)), while it absorbs for the two other configurations, leading to spin signal generated with an opposite sign. The same reasoning is used for the sign of the spin voltage detected in (Equation presented). Therefore, only the spin signal generated at (Equation presented) and detected at (Equation presented) remains after calculation of the mean of the four signals. The sign of each term in Eq. (1) corresponds to the relative orientation of the two electrodes involved. Thereby, after application of the mean to Eq. (1), only (Equation presented) remains.
J. C. Leutenantsmeyer, J. Ingla-Aynés, M. Gurram, and Bart J. van Wees, Efficient spin injection into graphene through trilayer hBN tunnel barriers, J. Appl. Phys. 124, 194301 (2018). 0021-8979 10.1063/1.5050874
J. Panda, M. Ramu, O. Karis, T. Sarkar, and M. V. Kamalakar, Ultimate Spin Currents in Commercial Chemical Vapor Deposited Graphene, ACS Nano 14, 12771 (2020). 1936-0851 10.1021/acsnano.0c03376
S. Chen, R. Ruiterand, V. Mathkar, B. J. Van Wees, and T. Banerjee, Temperature and electric field dependence of spin relaxation in graphene on SrTiO3, Phys. Status Solidi RRL 12, 1800216 (2018). 1862-6254 10.1002/pssr.201800216
G. Zebrev, in Physics and Applications of Graphene-Theory, edited by S. Mikhailov (InTech, Croatia, 2011), p. 475.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.