Andress, T.I., Robinson, Jr. E.: The Čech cohomology and the spectrum for 1-dimensional tiling systems. In: Ergodic theory, dynamical systems, and the continuing influence of John C. Oxtoby, volume 678 of Contemp. Math., pp. 53–71. Amer. Math. Soc., Providence, RI (2016)
Arnoux, P., Labbé, S.: On some symmetric multidimensional continued fraction algorithms. Ergodic Theory Dyn. Syst. 38, 1601–1626 (2018)
Bédaride, N., Hilion, A., Lustig, M.: Graph towers, laminations and their invariant measures. J. Lond. Math. Soc. 101, 1112–1172 (2020)
Bédaride, N., Hilion, A., Lustig, M.: Invariant measures on finite rank subshifts. arXiv:2007.09700 (2020)
Berthé, V., Bernales, P.Cecchi: Balancedness and coboundaries in symbolic systems. Theor. Comput. Sci. 777, 93–110 (2019)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Acyclic, connected and tree sets. Monatsh. Math. 176, 521–550 (2015)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and interval exchanges. J. Pure Appl. Algebra 219, 2781–2798 (2015)
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: The finite index basis property. J. Pure Appl. Algebra 219, 2521–2537 (2015)
Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and Its Applications, vol. 135. Cambridge University Press, Cambridge (2010)
Berthé, V., Steiner, W., Thuswaldner, J., Yassawi, R.: Recognizability for sequences of morphisms. Ergodic Theory Dyn. Syst. 39, 2896–2936 (2019)
Berthé, V., Steiner, W., Thuswaldner, J.M.: Geometry, dynamics, and arithmetic of s -adic shifts. Annales de l’Institut Fourier 69, 1347–1409 (2019)
Berthé, V., Tijdeman, R.: Balance properties of multi-dimensional words. Theor. Comput. Sci. 273(1–2):197–224 (2002). WORDS (Rouen, 1999)
Bezuglyi, S., Kwiatkowski, J.: The topological full group of a Cantor minimal system is dense in the full group. Topol. Methods Nonlinear Anal. 16, 371–397 (2000)
Boyle, M., Handelman, D.: Entropy versus orbit equivalence for minimal homeomorphisms. Pac. J. Math. 164, 1–13 (1994)
Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematical Centre Tracts, vol. 145. Mathematisch Centrum, Amsterdam (1981)
Cassaigne, J., Ferenczi, S., Messaoudi, A.: Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier 58, 1983–2005 (2008)
Cassaigne, J., Labbé, S., Leroy, J.: A set of sequences of complexity 2 n+ 1. In: Combinatorics on words, volume 10432 of Lecture Notes in Comput. Sci., pp. 144–156. Springer, Cham (2017)
Cortez, M.I., Durand, F., Petite, S.: Eigenvalues and strong orbit equivalence. Ergodic Theory Dyn. Syst. 36, 2419–2440 (2016)
Damron, M., Fickenscher, J.: The number of ergodic measures for transitive subshifts under the regular bispecial condition. arXiv:1902.04619 (2019)
Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and Brun words. In Combinatorics on words, volume 8079 of Lecture Notes in Comput. Sci., pp. 119–131. Springer, Heidelberg (2013)
Dolce, F., Perrin, D.: Eventually dendric shift spaces. In Proceedings of CSR 2019, LNCS, volume 11532, pp. 106–118. Springer (2019)
Durand, F.: Contributions à l’étude des suites et systèmes dynamiques substitutifs. Univ. de la Méditerranée, Thèse (1996)
Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergodic Theory Dyn. Syst. 20, 1061–1078 (2000)
Durand, F., Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems 20,: 1061–1078]. Ergodic Theory Dynam. Systems 23(663–669), 2003 (2000)
Durand, F., Frank, A., Maass, A.: Eigenvalues of minimal Cantor systems. J. Eur. Math. Soc. (JEMS) 21, 727–775 (2019)
Durand, F., Leroy, J.: S -adic conjecture and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 350, 979–983 (2012)
Durand, F., Perrin, D.: Dimension groups and dynamical systems. arXiv:2007.15721 (2020)
Dye, H.A.: On groups of measure preserving transformations. I. Am. J. Math. 81, 119–159 (1959)
Effros, E.G.: Dimensions and C* -algebras, volume 46 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC (1981)
Effros, E.G., Handelman, D.E., Shen, C.L.: Dimension groups and their affine representations. Am. J. Math. 102, 385–407 (1980)
Effros, E.G., Shen, C.L.: Dimension groups and finite difference equations. J. Oper. Theory 2, 215–231 (1979)
Effros, E.G., Shen, C.L.: Approximately finite C* -algebras and continued fractions. Indiana Univ. Math. J. 29, 191–204 (1980)
Effros, E.G., Shen, C.L.: The geometry of finite rank dimension groups. Ill. J. Math. 25, 27–38 (1981)
Elliott, G.A.: On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38, 29–44 (1976)
Ferenczi, S., Holton, C., Zamboni, L.Q.: Structure of three-interval exchange transformations III: ergodic and spectral properties. J. Anal. Math. 93, 103–138 (2004)
Ferenczi, S., Zamboni, L.Q.: Languages of k -interval exchange transformations. Bull. Lond. Math. Soc. 40, 705–714 (2008)
Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)
Frank, N. Priebe, Sadun, L.: Fusion: a general framework for hierarchical tilings of Rd. Geom. Dedic. 171, 149–186 (2014)
Giordano, T., Handelman, D., Hosseini, M.: Orbit equivalence of Cantor minimal systems and their continuous spectra. Math. Z. 289, 1199–1218 (2018)
Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and C∗ -crossed products. J. Reine Angew. Math. 469, 51–111 (1995)
Gjerde, R., Johansen, Ø.: Bratteli–Vershik models for Cantor minimal systems associated to interval exchange transformations. Math. Scand. 90, 87–100 (2002)
Glasner, E., Weiss, B.: Weak orbit equivalence of Cantor minimal systems. Int. J. Math. 6, 559–579 (1995)
Gottschalk, W.H., Hedlund, G.A.: Topological dynamics. American Mathematical Society Colloquium Publications, Vol. 36. American Mathematical Society, Providence, RI (1955)
Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3, 827–864 (1992)
Host, B.: Dimension groups and substitution dynamical systems. Preprint (1995)
Katok, A.B.: Invariant measures of flows on orientable surfaces. Dokl. Akad. Nauk SSSR 211, 775–778 (1973)
Katok, A.B., Stepin, A.M.: Approximations in ergodic theory. Uspehi Mat. Nauk 22, 81–106 (1967)
Keane, M.: Interval exchange transformations. Math. Z 141, 25–31 (1975)
Labbé, S., Leroy, J.: Bispecial factors in the Brun S -adic system. In: Developments in language theory, volume 9840 of Lecture Notes in Comput. Sci. pp. 280–292. Springer, Berlin (2016)
Nogueira, A., Rudolph, D.: Topological weak-mixing of interval exchange maps. Ergodic Theory Dyn. Syst. 17, 1183–1209 (1997)
Ormes, N.: Real coboundaries for minimal Cantor systems. Pac. J. Math. 195, 453–476 (2000)
Ormes, N.S.: Strong orbit realization for minimal homeomorphisms. J. Anal. Math. 71, 103–133 (1997)
Ornstein, D.S., Weiss, B.: Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Am. Math. Soc. (NS) 2, 161–164 (1980)
Putnam, I.F.: The C∗ -algebras associated with minimal homeomorphisms of the Cantor set. Pac. J. Math. 136, 329–353 (1989)
Putnam, I.F.: C∗ -algebras arising from interval exchange transformations. J. Oper. Theory 27, 231–250 (1992)
Queffélec, M.: Substitution Dynamical Systems-spectral Analysis. Lecture Notes in Mathematics, vol. 1294, 2nd edn. Springer, Berlin (2010)
Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. France 110, 147–178 (1982)
Riedel, N.: Classification of dimension groups and iterating systems. Math. Scand. 48, 226–234 (1981)
Riedel, N.: A counterexample to the unimodular conjecture on finitely generated dimension groups. Proc. Am. Math. Soc. 83, 11–15 (1981)
Sugisaki, F.: The relationship between entropy and strong orbit equivalence for the minimal homeomorphisms. I. Int. J. Math. 14, 735–772 (2003)