[en] Ammonia-oxidation is the first rate-limiting step of the nitrification process performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). The response of ammonia oxidizers to agricultural management determines the forms of nitrogen available for plant nutrition and the potential for nitrate leaching, nitrous oxide emissions, and soil acidification. We investigated the potential nitrification rates (PNR) of AOA and AOB through the use of a specific inhibitor of bacterial nitrification, and the amoA gene abundance of AOB and AOA under potato, fallow and eucalyptus land uses in an agricultural system in the Central Andes of Bolivia. AOA dominated PNR and amoA gene abundance under all land uses. The ratio of AOA to AOB abundance decreased with soil pH, due to higher AOB abundances under the less acid soils of potato crops. Eucalyptus led to reduced AOB amoA abundances and PNR of both AOA and AOB, while PNR were highest under potato soils, and the contribution of AOB to total PNR increased. Specific PNR, as expressed per amoA gene copy numbers, was 12, 14 and 62 times higher for AOB than for AOA in potato, fallow and eucalyptus soils, respectively. AOB and AOA PNR were positively related to their respective amoA gene copy numbers, but for AOA the relationship depended on land use. This study demonstrates the interest for measuring separately nitrification rates of AOA and AOB for a mechanistic understanding of nitrification in different environments, as well as the importance of measuring process rates for assessing the environmental consequences of land use management.
Stein, L.Y., Insights into the physiology of ammonia-oxidizing microorganisms (2019) Curr. Opin. Chem. Biol., 49, pp. 9-15
Kits, D.K., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Wagner, M., Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle (2017) Nature, 549, pp. 269-272
Martens-Habbena, W., Berube, P.M., Urakawa, H., De la Torre, J.R., Stahl, D.A., Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria (2009) Nat. Lett., 461, pp. 976-979
Park, B., Park, S., Yoon, D., Schouten, S., Sinninghe, J.S., Rhee, S.K., Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria (2010) Appl. Environ. Microbiol., 76, pp. 7575-7587
Jung, M., Park, S., Min, D., Kim, J., Rijpstra, W.I.C., Kim, G., Madsen, E.L., Rhee, S.K., Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil (2011) Appl. Environ. Microbiol., 77, pp. 8635-8647
Bollmann, A., Bär-Gilissen, M.-J., Laanbroek, H.J., Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria (2002) Appl. Environ. Microbiol., 68, pp. 4751-4757
Zhang, Y., Qin, W., Hou, L., Zakem, E.J., Wan, X., Zhao, Z., Liu, L., Herndl, G.J., Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean (2020) Proc. Natl. Acad. Sci. U. S. A, 117, pp. 4823-4830
Suzuki, I., Dular, U., Kwok, S.C., Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts (1974) J. Bacteriol., 120, pp. 556-558
Gonzales-Cabaleiro, R., Curtis, T.P., Ofiteru, D.I., Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield (2019) Water Res., 154, pp. 238-245
Wang, B., Qin, W., Ren, Y., Zhou, X., Jung, M.Y., Han, P., Eloe-Fadrosh, E.A., Jia, Z., Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons (2019) ISME J., 13, pp. 3067-3079
Clark, D.R., Mckew, B.A., Dong, L.F., Leung, G., Dumbrell, A.J., Stott, A., Grant, H., Whitby, C., Mineralization and nitrification: archaea dominate ammonia-oxidising communities in grassland soils (2020) Soil Biol. Biochem., 143, p. 107725
Sterngren, A., Hallin, S., Bengtson, P., Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil (2015) Front. Microbiol., 6, pp. 1-8
Li, X., Xiao, Y., Ren, W., Liu, Z., Shi, J., Quan, Z., Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary (2012) Biomed. Biotechnol., 13, pp. 769-782
He, J.-Z., Shen, J.-P., Zhang, L.-M., Zhu, Y.-G., Zheng, Y.-M., Xu, M.-G., Di, H., Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices (2007) Environ. Microbiol., 9, pp. 2364-2364–2374
He, J.Z., Hu, H.W., Zhang, L.M., Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils (2012) Soil Biol. Biochem., 55, pp. 146-154
Lu, X., Bottomley, P.J., Myrold, D.D., Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils (2015) Soil Biol. Biochem., 85, pp. 54-62
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schleper, C., Archaea predominate among ammonia-oxidizing prokaryotes in soils (2006) Nature, 442, pp. 806-809
Qin, H., Yuan, H., Zhang, H., Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3-N loss in acidic soil of sloped land (2013) Biol. Fertil. Soils, 49, pp. 767-776
Gao, S., Chang, D., Zou, C., Cao, W., Gao, J., Huang, J., Bai, J., Thorup-Kristensen, K., Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures (2018) Eur. J. Soil Biol., 88, pp. 27-35
Zhang, F., Pan, W., Gu, J., Xu, B., Zhang, W., Zhu, B.-Z., Wang, Y.-X., Wang, Y.-F., Dominance of ammonia-oxidizing archaea community induced by land use change from Masson pine to eucalyptus plantation in subtropical China (2016) Appl. Microbiol. Biotechnol.
Yao, H., Gao, Y., Nicol, G.W., Campbell, C.D., Prosser, J.I., Zhang, L., Han, W., Singh, B.K., Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils (2011) Appl. Environ. Microbiol., 77, pp. 4618-4625
Jiang, Q.Q., Bakken, L.R., Comparison of Nitrosospira strains isolated from terrestrial environments (1999) FEMS Microbiol. Ecol., 30, pp. 171-186
Carnol, M., Kowalchuk, G.A., De Boer, W., Nitrosomonas europaea-like bacteria detected as the dominant β-subclass Proteobacteria ammonia oxidisers in reference and limed acid forest soils (2002) Soil Biol. Biochem., 34, pp. 1047-1050
Hayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Takami, H., An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil (2017) ISME J., 11, pp. 1130-1141
Taylor, A.E., Zeglin, L.H., Dooley, S., Myrold, D.D., Bottomley, P.J., Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils (2010) Appl. Environ. Microbiol., 76, pp. 7691-7698
Ginestet, P., Audic, J., Urbain, V., Block, J., Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors Allylthiourea and Azide (1998) Appl. Environ. Microbiol., 64, pp. 2266-2268
Martens-Habbena, W., Qin, W., Horak, R.E.A., Urakawa, H., Schauer, A.J., Moffett, J.W., Armbrust, E.V., Stahl, D.A., The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger (2015) Environ. Microbiol., 17, pp. 2261-2274
Munz, G., Mori, G., Vannini, C., Lubello, C., Kinetic parameters and inhibition response of ammonia- and nitrite-oxidizing bacteria in membrane bioreactors and conventional activated sludge processes (2010) Environ. Technol., 31, pp. 1557-1564
Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P.H., Schloter, M., Wagner, M., The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function (2003) Appl. Environ. Microbiol., 69, pp. 6875-6887
Zhou, X., Oleszkiewicz, J.A., Biodegradation of oestrogens in nitrifying activated sludge (2010) Environ. Toxicol., 31, pp. 1263-1269
Rattier, M., Reungoat, J., Keller, J., Gernjak, W., Removal of micropollutants during tertiary wastewater treatment by biofiltration: role of nitrifiers and removal mechanisms (2014) Water Res., 54, pp. 89-99
Zhao, J., Meng, Y., Drewer, J., Skiba, U.M., Prosser, J.I., Gubry-Rangin, C., Differential ecosystem function stability of ammonia-oxidizing archaea and bacteria following short-term environmental perturbation (2020) Appl. Environ. Sci., 5, pp. 1-14
Wessén, E., Nyberg, K., Jansson, J.K., Hallin, S., Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management (2010) Appl. Soil Ecol., 45, pp. 193-200
Sun, R., Myrold, D.D., Wang, D., Guo, X., Chu, H., AOA and AOB communities respond differently to changes of soil pH under long-term fertilization (2019) Soil Ecol. Lett., 1, pp. 126-135
Nicol, G.W., Leininger, S., Schleper, C., Prosser, J.I., The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria (2008) Environ. Microbiol., 10, pp. 2966-2978
Subbarao, G.V., Sahrawat, K., Nakahara, K., Ishikawa, T., Kishii, M., Rao, I., Hash, C., Lata, J., Biological nitrification inhibition - a novel strategy to regulate nitrification in agricultural systems (2012) Advances in Agronomy, 114, pp. 249-302. , Elsevier
Kampschreur, M.J., van der Star, R.L., Wouter, Wielders, H.A., Mulder, J.W., Jetten, M.S.M., van Loosdrecht, M.C.M., Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment (2010) Appl. Environ. Microbiol., 42, pp. 812-826
Bolan, N.S., Hedley, M.J., White, R.E., Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures (1991) Plant Soil, 134, pp. 53-63
Condori, B., Devaux, A., Mamani, P., Efecto residual de la fertilización del cultivo de papa sobre el cultivo de haba (Vicia faba L.) en el sistema de rotación (1997) Rev. Latinoam. La Papa., 9, pp. 171-187
Navarro, G., Maldonado, M., Geografía Ecológica de Bolivia - Vegetación y Ambientes Acuáticos, Patiño, Simón I., Cochabamba, Bolivia (2002)
Pestalozzi, H., Sectoral fallow systems and management of soil fertility: the rationality of indigenous knowledge in the High Andes of Bolivia (2000) Mt. Res. Dev., 20, pp. 64-71
Servicio Nacional de Meteorología e Hidrología - Estado Plurinacional de Bolivia (2016), http://www.senamhi.gob.bo/web/public/, (Accessed 20 July 2016)
(2014) Ministerio de Medio Ambiente y Agua, Atlas Cuenca del Rio Grande, La Paz, Bolivia
Allen, S.E., Chemical Analysis of Ecological Materials (1989), second ed. Blackwell Scientific Publications Oxford, UK
Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, K.M., Nitrogen mineralization, immobilization, and nitrification (1994) Methods Soil Anal. Part 2. Microbiol. Biochem. Prop., pp. 985-1081. , A. Page R. Miller D. Keeney Soil Science Society of America Madison, Wisconsin
Rotthauwe, J., Witzel, K., Liesack, W., The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations (1997) Appl. Environ. Microbiol., 63, pp. 4704-4712
Tourna, M., Freitag, T.E., Nicol, G.W., Prosser, J.I., Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms (2008) Environ. Microbiol., 10, pp. 1357-1364
Barratt, K., Mackay, J.F., Improving real-time PCR genotyping assays by asymmetric amplification (2002) J. Clin. Microbiol., 40, pp. 1571-1572
Simonin, M., Richaume, A., Guyonnet, J.P., Dubost, A., Martins, J.M.F., Pommier, T., Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers (2016) Sci. Rep., pp. 1-10
Mangiafico, S.S., An R Companion for the Handbook of Biological Statistics (2015), Rutgers Cooperative Extension New Brunswick, NJ 1.3.2
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., Mixed Effects Models and Extensions in Ecology with R (2009), Springer Science+Business Media New York
Jaeger, B.C., Edwards, L.J., Das, K., Sen, P.K., An R statistic for fixed effects in the generalized linear mixed model (2016) J. Appl. Stat., 44, pp. 1086-1105
R Core Team, R., A Language and Environment for Statistical Computing (2018), R Foundation for Statistical Computing Vienna, Austria
Fox, J., Weisger, S., An {R} Companion to Applied Regression (2011), http://socserv.socsci.mcmaster.ca/jfox/Books/Companion, second ed. SAGE Publications, Inc. Thousand Oaks California
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Nlme: Linear and Nonlinear Mixed Effects Models (2018), p. 321
Baty, F., Ritz, C., Charles, S., Brutsche, M., A toolbox for nonlinear regression in R : the package nlstools (2015) J. Stat. Software, 66
Jaeger, B.C., Computes R squared for mixed (multilevel) model (2017) Packag. ‘R2glmm.’, 12
Chu, H., Fujii, T., Morimoto, S., Lin, X., Yagi, K., Hu, J., Zhang, J., Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil (2007) Appl. Environ. Microbiol., 73, pp. 485-491
Zhang, Y., Ji, G., Quantitative responses of potential nitrification and denitrification rates to the size of microbial communities in rice paddy soils (2018) Chemosphere, 211, pp. 970-977
Veresoglou, S.D., Sen, R., Mamolos, A.P., Veresoglou, D.S., Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils (2011) J. Ecol., 99, pp. 1339-1349
Sauder, L.A., Ross, A.A., Neufeld, J.D., Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria (2016) FEMS Microbiol. Lett., pp. 1-8
White, C.S., Volatile and water-soluble inhibitors of nitrogen mineralization and nitrification in a ponderosa pine ecosystem (1986) Biol. Fertil. Soils, 2, pp. 97-104
Chu, H., Fujii, T., Morimoto, S., Lin, X., Yagi, K., Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management (2008) Soil Biol. Biochem., 40, pp. 1960-1963
French, E., Kozlowski, J.A., Mukherjee, M., Bullerjahn, G., Bollmann, A., Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater (2012) Appl. Environ. Microbiol., 78, pp. 5773-5780
Burton, S.A.Q., Prosser, J.I.I., Autotrophic ammonia oxidation at low pH through urea hydrolysis (2001) Appl. Environ. Microbiol., 67, pp. 2952-2957
de Boer, W., Gunnewiek, P.J.A.K., Veenhuis, M., Bock, E., Laanbroek, H.J., Nitrification at low pH by aggregated chemolithotrophic bacteria, Appl (1991) Environ. Microbiol., 57, pp. 3600-3604
Prosser, J.I., Nicol, G.W., Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation (2012) Trends Microbiol., 20, pp. 523-531
Lehtovirta-Morley, L.E., Ross, J., Hink, L., Weber, E.B., Gubry-Rangin, C., Thion, C., Prosser, J.I., Nicol, G.W., Isolation of “Candidatus Nitrosocosmicus franklandus”, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration (2016) FEMS Microbiol. Ecol., 92, pp. 1-10
Klotz, M.G., Norton, J.M., Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV (1995) Gene, 163, pp. 159-160
Norton, J.M., Low, J.M., Klotz, M.G., The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV (1996) FEMS Microbiol. Lett., 139, pp. 181-188
Wang, S., Chen, Y., Phylogenomic analysis demonstrates a pattern of rare and long-lasting concerted evolution in prokaryotes (2018) Commun. Biol., pp. 1-12
Pedneault, E., Galand, P.E., Polvin, M., Tremblay, J.-E., Lovejoy, C., Archaeal amoA and ureC genes and their transcriptional activity in the Arctic Ocean (2014) Sci. Rep., 4, pp. 1-10
Shen, J., Zhang, L.M., Zhu, Y.G., Zhang, J.B., He, J.Z., Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam (2008) Environ. Microbiol., 10, pp. 1601-1611
Zhang, L., Hu, H., Shen, J., He, J., Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils (2012) ISME J., 6, pp. 1032-1045
Subbarao, G.V., Kishii, M., Nakahara, K., Ishikawa, T., Ban, T., Tsujimoto, H., George, T.S., Ito, O., Biological nitrification inhibition (BNI)—is there potential for genetic interventions in the Triticeae? (2009) Breed Sci., 59, pp. 529-545
Norton, J., Ouyang, Y., Controls and adaptive management of nitrification in agricultural soils (2019) Front. Microbiol., 10, pp. 1-18
Rahalkar, M., Deutzmann, J., Schink, B., Bussmann, I., Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake Constance (Germany) (2009) Appl. Environ. Microbiol., 75, pp. 119-126
Bossolani, W.J., Costa, C.A., Cruciol, Merloti, L.F., Moretti, L.G., Costa, N.R., Tsai, S.M., Kuramae, E.E., Long-term lime and gypsum amendment increase nitrogen fixation and decrease nitrification and denitrification gene abundances in the rhizosphere and soil in a tropical no-till intercropping system (2020) Geoderma, 375, p. 114476
Liu, H., Li, J., Zhao, Y., Xie, K., Tang, X., Wang, S., Li, Z., Li, Y., Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China (2018) Sci. Total Environ., 633, pp. 641-648