Intermolecular interactions of the extended recognition site of VIM-2 metallo-β-lactamase with 1,2,4-triazole-3-thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio QC
1,2,4-triazole-3-thione inhibitors; metallo-β-lactamases; intermolecular interactions; ab initio quantum chemistry; polarizable molecular mechanics
Abstract :
[en] Abstract Molecular dynamics on the complexes of inhibitors with Zn-metalloproteins are a privileged area of applications of polarizable molecular mechanics potentials. With which accuracy could these reproduce the QC intermolecular interaction energies in the two mono-zinc cores and in the dizinc core, toward full-fledged MD simulations on the entire protein complexes? We considered the complexes of the extended recognition site of a Zn-dependent metallo-β-lactamase, VIM-2, produced by bacteria responsible for nosocomial infections, with five newly synthesized inhibitors sharing an original dizinc binding group, 1,2,4-triazole-3-thione (TZT). We considered the energy-minimized structures of each of the five VIM-2 complexes obtained with the SIBFA potential. Energy decomposition analyses (EDA) at the HF level enabled to compare the QC and the SIBFA ΔE values and their contributions in the zinc cores, with and without TZT, totaling 30 complexes. With one exception, the ΔE(QC) values were reproduced with relative errors <1.5\%. We next considered the complex of the entire inhibitors with an extended model of VIM-2 recognition site, totaling up to 280 atoms. ΔE(SIBFA) could closely reproduce ΔE(QC). EDA analyses were resumed on the complexes of each inhibitor arm with its interacting VIM-2 residues. As a last step, EDA results at correlated levels were analyzed for the mono- and dizinc sites enabling comparisons with dispersion-augmented ΔE(SIBFA) and correlated multipoles and polarizabilities. Closely reproducing ΔE(QC) and the contrasting trends of its individual contributions should enable for dependable free energy perturbation studies and comparisons to recent experimental ΔG values, limiting as much as possible the reliance on error compensations.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others Life sciences: Multidisciplinary, general & others
Author, co-author :
Kwapien, Karolina
Gavara, Laurent
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Berthomieu, Dorothée
Hernandez, Jean-François
Gresh, Nohad
Language :
English
Title :
Intermolecular interactions of the extended recognition site of VIM-2 metallo-β-lactamase with 1,2,4-triazole-3-thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio QC
L. Riccardi, V. Genna, M. De Vivo, Nature Rev. Chem. 2018, 2, 100.
A. Y. Chen, R. N. Adamek, B. L. Dick, C. V. Credille, C. N. Morrison, S. M. Cohen, Chem. Rev. 2019, 119, 1323.
J. E. Raczynska, I. G. Shabalin, W. Minor, A. Wlodawer, M. Jaskolski, Drug Resistance Updates 2018, 40, 1.
N. Gresh, G. A. Cisneros, T. A. Darden, J.-P. Piquemal, J. Chem. Theory Comput. 2007, 3, 1960.
Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Ponder, P. Ren, J. Chem. Theory Comput. 2013, 9, 4046.
C. Liu, J.-P. Piquemal, P. Ren, J. Chem. Theory Comput. 2019, 15, 4122.
J.-P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, T. A. Darden, J. Chem. Phys. 2006, 124, 104101.
R. Chaudret, N. Gresh, C. Narth, L. Lagardère, T. A. Darden, G. A. Cisneros, J.-P. Piquemal, J Phys. Chem. A. 2014, 118, 7598.
O. Demerdash, Y. Mao, T. Liu, M. Head-Gordon, T. Head-Gordon, J. Chem. Phys. 2018, 147, 161721.
A. K. Das, L. Urban, I. Leven, M. Loipersberger, A. Aldossary, M. Head-Gordon, T. Head-Gordon, J. Chem. Theory Comput. 2019, 15, 5001.
G. Tiraboschi, B.-P. Roques, N. Gresh, J. Comput. Chem. 1999, 20, 1379.
G. Tiraboschi, N. Gresh, C. Giessner-Prettre, L. G. Pedersen, D. W. Deerfield, J. Comput. Chem. 2000, 21, 1011.
N. Gresh, J.-P. Piquemal, M. Krauss, J. Comput. Chem. 2005, 26, 1113.
Z. Jing, R. Qi, C. Liu, P. Ren, J. Chem. Phys. 2017, 147, 161733.
L. El Khoury, S. Naseem-Khan, K. Kwapien, Z. Hobaika, R. G. Maroun, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2017, 38, 1897.
A. Warshel, M. Levitt, J. Mol. Biol. 1976, 103, 227.
T. Wesolowski, A. Warshel, J. Phys. Chem. 1994, 98, 5183.
J. Gao, M. Freindorf, J. Phys. Chem. A 1997, 101, 3182.
P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss, D. R. Garmer, H. Basch, D. J. Cohen, J. Chem. Phys. 1996, 105, 1968.
I. Adamovic, M. A. Freitag, M. S. Gordon, J. Chem. Phys. 2003, 118, 6725.
M. S. Gordon, D. G. Fedorov, S. R. Pruitt, L. V. Slipchenko, Chem. Rev. 2012, 112, 632.
D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci, J.-P. Piquemal, J. Chem. Theory Comput. 2017, 13, 4025.
D. Xu, H. Guo, Q. Cui, J. Phys. Chem. A. 2007, 111, 5630.
Q. Cui, J. Chem. Phys. 2016, 145, 140901.
J. Antony, N. Gresh, L. Olsen, L. Hemmingsen, C. J. Schofield, R. Bauer, J. Comput. Chem. 2002, 23, 1281.
J. Antony, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2005, 26, 1131.
N. Gresh, D. Perahia, B. de Courcy, J. Foret, C. Roux, L. El Khoury, J.-P. Piquemal, J. Comput. Chem. 2016, 37, 2770.
D. King, N. Strynadka, Protein Sci. 2011, 20, 1484.
J.-D. Docquier, J. Lammotte-Brasseur, M. Galleni, G. Amicosante, J.-M. Frere, G. M. Rossolini, Antimicrob Chemother. 2003, 51, 257.
J. D. Docquier, S. Mangani, Drug Resistance Updates 2018, 36, 13.
M. F. Mojica, R. A. Bonomo, W. Fast, Curr. Drug Targets 2016, 17, 1029.
M. Makena, A. O. Düzgün, J. Brem, M. A. McDonough, A. M. Rydzik, M. I. Abboud, A. Saral, A. C. Çiçek, C. Sandalli, C. Schofield, Antimicrob. Agents Chemother 2016, 60, 1377.
K. Kwapien, M. Damergi, S. Nader, L. E. Khoury, Z. Hobaika, R. G. Maroun, J. -P. Piquemal, L. Gavara, D. Berthomieu, J.-F. Hernandez, N. Gresh, J. Phys. Chem. B 2017, 121, 6295.
L. Gavara, L. Sevaille, F. De Luca, P. Mercuri, C. Bebrone, G. Feller, A. Legru, G. Cerboni, S. Tanfoni, D. Baud, G. Cutolo, B. Bestgen, G. Chelini, F. Verdirosa, F. Sannio, C. Pozzi, M. Benvenuti, K. Kwapien, M. Fischer, K. Becker, J.-M. Frère, S. Mangani, N. Gresh, D. Berthomieu, M. Galleni, J.-D. Docquier, J.-F. Hernandez, Eur. J. Med. Chem. 2020, 208, 112720.
J. Michel, J. W. Essex, J. Comput.-Aided Mol. Des. 2010, 24, 639.
J. Zhang, W. Yang, J.-P. Piquemal, P. Ren, J. Chem. Theory Comput. 2012, 8, 1314.
L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M. H. Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, M. J, Chem. Sci. 2018, 9, 956.
W. J. Stevens, W. Fink, Chem. Phys. Letts 1987, 39, 15.
R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, M. Head-Gordon, J. Phys. Chem. A 2007, 111, 8753.
B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887.
A. J. Misquitta, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 2003, 91, 033201.
T. Dudev, M. Devereux, M. Meuwly, C. Lim, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2015, 36, 285.
M. Devereux, N. Gresh, J.-P. Piquemal, M. Meuwly, J. Comput. Chem. 2014, 35, 1577.
N. Gresh, J. E. Sponer, M. Devereux, K. Gkionis, B. de Courcy, J.-P. Piquemal, J. Sponer, J. Phys. Chem. B. 2015, 119, 9477.
N. Gresh, S. Naseem-Khan, L. Lagardère, J.-P. Piquemal, J. E. Sponer, J. Sponer, J. Phys. Chem. B 2017, 121, 3997.
N. Mardirossian, M. Head-Gordon, Phys. Chem. Chem. Phys. 2014, 16, 9904.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
C. Rouanet-Mehouas, B. Czarny, F. Beau, E. Cassar-Lajeunesse, E. A. Stura, V. Dive, L. Devel, J. Med. Chem. 2017, 60, 403.
B. L. Marcial, S. F. Sousa, I. L. Barbosa, H. F. Dos Santos, M. J. Ramos, J. Phys. Chem. B 2012, 116, 13644.
D. Leppert, R. L. P. Lindberg, L. Kappos, S. L. Leib, Brain Res. Rev. 2001, 36, 249.
M. Ram, Y. Sherer, Y. Shoenfeld, J. Clin, Immunology 2006, 26, 299.
N. J. Porter, D. W. Christianson, Curr. Op. Struct. Biol. 2019, 59, 9.
L. Ahmad, S. Plancqueel, V. Dubosclard, N. Lazar, W. Ghattas, I. Li De La Sierra-Gallay, H. Van Tilbeurgh, L. Salmon, FEBS Letts. 2018, 592, 1667.
T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
D. Feller, J. Comput. Chem. 1996, 17, 1571.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT 2009.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
Y. Shao, Z. Gan, A. T. B. Gilbert, et al., Mol. Phys 2015, 113, 184.
A. J. Stone, J. Phys. Chem. A. 2011, 115, 701.
D. R. Garmer, W. J. Stevens, J. Phys. Chem. 1989, 93, 8263.
G. A. Evangelakis, J. P. Rizos, I. E. Lagaris, I. N. Demetropoulos, Comput. Phys. Commun. 1987, 46, 401.
M. Devillers, J.-P. Piquemal, L. Salmon, N. Gresh, J. Comput. Chem. 2020, 41, 839.
The HSL Mathematical Software Library; Science and Technology Facilities
N. Gresh, J. Comput. Chem. 1995, 16, 856.
N. Gresh, D. R. Garmer, J. Comput. Chem. 1996, 17, 1481.
A. Marjolin, C. Gourlaouen, C. Clavaguera, N. Gresh, P. Ren, J. Wu, J.-P. Dognon, J.-P. Piquemal, Theo. Chem. Acc. 2012, 131, 1199.
G. Corongiu, E. Clementi, J. Chem. Phys. 1978, 69, 4885.
B. de Courcy, J.-P. Piquemal, C. Garbay, N. Gresh, J. Am. Chem. Soc. 2010, 132, 3312.
N. Gresh, K. El Hage, D. Perahia, J.-P. Piquemal, C. Berthomieu, D. Berthomieu, J. Comput. Chem. 2014, 35, 2096.
N. Gresh, B. de Courcy, J.-P. Piquemal, J. Foret, S. Courtiol-Legourd, L. Salmon, J. Phys. Chem. B 2011, 115, 8304.