Intermolecular interactions of the extended recognition site of VIM-2 metallo-β-lactamase with 1,2,4-triazole-3-thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio QC
1,2,4-triazole-3-thione inhibitors; metallo-β-lactamases; intermolecular interactions; ab initio quantum chemistry; polarizable molecular mechanics
Abstract :
[en] Abstract Molecular dynamics on the complexes of inhibitors with Zn-metalloproteins are a privileged area of applications of polarizable molecular mechanics potentials. With which accuracy could these reproduce the QC intermolecular interaction energies in the two mono-zinc cores and in the dizinc core, toward full-fledged MD simulations on the entire protein complexes? We considered the complexes of the extended recognition site of a Zn-dependent metallo-β-lactamase, VIM-2, produced by bacteria responsible for nosocomial infections, with five newly synthesized inhibitors sharing an original dizinc binding group, 1,2,4-triazole-3-thione (TZT). We considered the energy-minimized structures of each of the five VIM-2 complexes obtained with the SIBFA potential. Energy decomposition analyses (EDA) at the HF level enabled to compare the QC and the SIBFA ΔE values and their contributions in the zinc cores, with and without TZT, totaling 30 complexes. With one exception, the ΔE(QC) values were reproduced with relative errors <1.5\%. We next considered the complex of the entire inhibitors with an extended model of VIM-2 recognition site, totaling up to 280 atoms. ΔE(SIBFA) could closely reproduce ΔE(QC). EDA analyses were resumed on the complexes of each inhibitor arm with its interacting VIM-2 residues. As a last step, EDA results at correlated levels were analyzed for the mono- and dizinc sites enabling comparisons with dispersion-augmented ΔE(SIBFA) and correlated multipoles and polarizabilities. Closely reproducing ΔE(QC) and the contrasting trends of its individual contributions should enable for dependable free energy perturbation studies and comparisons to recent experimental ΔG values, limiting as much as possible the reliance on error compensations.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others Life sciences: Multidisciplinary, general & others
Author, co-author :
Kwapien, Karolina
Gavara, Laurent
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Berthomieu, Dorothée
Hernandez, Jean-François
Gresh, Nohad
Language :
English
Title :
Intermolecular interactions of the extended recognition site of VIM-2 metallo-β-lactamase with 1,2,4-triazole-3-thione inhibitors. Validations of a polarizable molecular mechanics potential by ab initio QC
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
L. Riccardi, V. Genna, M. De Vivo, Nature Rev. Chem. 2018, 2, 100.
A. Y. Chen, R. N. Adamek, B. L. Dick, C. V. Credille, C. N. Morrison, S. M. Cohen, Chem. Rev. 2019, 119, 1323.
J. E. Raczynska, I. G. Shabalin, W. Minor, A. Wlodawer, M. Jaskolski, Drug Resistance Updates 2018, 40, 1.
N. Gresh, G. A. Cisneros, T. A. Darden, J.-P. Piquemal, J. Chem. Theory Comput. 2007, 3, 1960.
Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Ponder, P. Ren, J. Chem. Theory Comput. 2013, 9, 4046.
C. Liu, J.-P. Piquemal, P. Ren, J. Chem. Theory Comput. 2019, 15, 4122.
J.-P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, T. A. Darden, J. Chem. Phys. 2006, 124, 104101.
R. Chaudret, N. Gresh, C. Narth, L. Lagardère, T. A. Darden, G. A. Cisneros, J.-P. Piquemal, J Phys. Chem. A. 2014, 118, 7598.
O. Demerdash, Y. Mao, T. Liu, M. Head-Gordon, T. Head-Gordon, J. Chem. Phys. 2018, 147, 161721.
A. K. Das, L. Urban, I. Leven, M. Loipersberger, A. Aldossary, M. Head-Gordon, T. Head-Gordon, J. Chem. Theory Comput. 2019, 15, 5001.
G. Tiraboschi, B.-P. Roques, N. Gresh, J. Comput. Chem. 1999, 20, 1379.
G. Tiraboschi, N. Gresh, C. Giessner-Prettre, L. G. Pedersen, D. W. Deerfield, J. Comput. Chem. 2000, 21, 1011.
N. Gresh, J.-P. Piquemal, M. Krauss, J. Comput. Chem. 2005, 26, 1113.
Z. Jing, R. Qi, C. Liu, P. Ren, J. Chem. Phys. 2017, 147, 161733.
L. El Khoury, S. Naseem-Khan, K. Kwapien, Z. Hobaika, R. G. Maroun, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2017, 38, 1897.
A. Warshel, M. Levitt, J. Mol. Biol. 1976, 103, 227.
T. Wesolowski, A. Warshel, J. Phys. Chem. 1994, 98, 5183.
J. Gao, M. Freindorf, J. Phys. Chem. A 1997, 101, 3182.
P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss, D. R. Garmer, H. Basch, D. J. Cohen, J. Chem. Phys. 1996, 105, 1968.
I. Adamovic, M. A. Freitag, M. S. Gordon, J. Chem. Phys. 2003, 118, 6725.
M. S. Gordon, D. G. Fedorov, S. R. Pruitt, L. V. Slipchenko, Chem. Rev. 2012, 112, 632.
D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci, J.-P. Piquemal, J. Chem. Theory Comput. 2017, 13, 4025.
D. Xu, H. Guo, Q. Cui, J. Phys. Chem. A. 2007, 111, 5630.
Q. Cui, J. Chem. Phys. 2016, 145, 140901.
J. Antony, N. Gresh, L. Olsen, L. Hemmingsen, C. J. Schofield, R. Bauer, J. Comput. Chem. 2002, 23, 1281.
J. Antony, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2005, 26, 1131.
N. Gresh, D. Perahia, B. de Courcy, J. Foret, C. Roux, L. El Khoury, J.-P. Piquemal, J. Comput. Chem. 2016, 37, 2770.
D. King, N. Strynadka, Protein Sci. 2011, 20, 1484.
J.-D. Docquier, J. Lammotte-Brasseur, M. Galleni, G. Amicosante, J.-M. Frere, G. M. Rossolini, Antimicrob Chemother. 2003, 51, 257.
J. D. Docquier, S. Mangani, Drug Resistance Updates 2018, 36, 13.
M. F. Mojica, R. A. Bonomo, W. Fast, Curr. Drug Targets 2016, 17, 1029.
M. Makena, A. O. Düzgün, J. Brem, M. A. McDonough, A. M. Rydzik, M. I. Abboud, A. Saral, A. C. Çiçek, C. Sandalli, C. Schofield, Antimicrob. Agents Chemother 2016, 60, 1377.
K. Kwapien, M. Damergi, S. Nader, L. E. Khoury, Z. Hobaika, R. G. Maroun, J. -P. Piquemal, L. Gavara, D. Berthomieu, J.-F. Hernandez, N. Gresh, J. Phys. Chem. B 2017, 121, 6295.
L. Gavara, L. Sevaille, F. De Luca, P. Mercuri, C. Bebrone, G. Feller, A. Legru, G. Cerboni, S. Tanfoni, D. Baud, G. Cutolo, B. Bestgen, G. Chelini, F. Verdirosa, F. Sannio, C. Pozzi, M. Benvenuti, K. Kwapien, M. Fischer, K. Becker, J.-M. Frère, S. Mangani, N. Gresh, D. Berthomieu, M. Galleni, J.-D. Docquier, J.-F. Hernandez, Eur. J. Med. Chem. 2020, 208, 112720.
J. Michel, J. W. Essex, J. Comput.-Aided Mol. Des. 2010, 24, 639.
J. Zhang, W. Yang, J.-P. Piquemal, P. Ren, J. Chem. Theory Comput. 2012, 8, 1314.
L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M. H. Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, M. J, Chem. Sci. 2018, 9, 956.
W. J. Stevens, W. Fink, Chem. Phys. Letts 1987, 39, 15.
R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell, M. Head-Gordon, J. Phys. Chem. A 2007, 111, 8753.
B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887.
A. J. Misquitta, B. Jeziorski, K. Szalewicz, Phys. Rev. Lett. 2003, 91, 033201.
T. Dudev, M. Devereux, M. Meuwly, C. Lim, J.-P. Piquemal, N. Gresh, J. Comput. Chem. 2015, 36, 285.
M. Devereux, N. Gresh, J.-P. Piquemal, M. Meuwly, J. Comput. Chem. 2014, 35, 1577.
N. Gresh, J. E. Sponer, M. Devereux, K. Gkionis, B. de Courcy, J.-P. Piquemal, J. Sponer, J. Phys. Chem. B. 2015, 119, 9477.
N. Gresh, S. Naseem-Khan, L. Lagardère, J.-P. Piquemal, J. E. Sponer, J. Sponer, J. Phys. Chem. B 2017, 121, 3997.
N. Mardirossian, M. Head-Gordon, Phys. Chem. Chem. Phys. 2014, 16, 9904.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
C. Rouanet-Mehouas, B. Czarny, F. Beau, E. Cassar-Lajeunesse, E. A. Stura, V. Dive, L. Devel, J. Med. Chem. 2017, 60, 403.
B. L. Marcial, S. F. Sousa, I. L. Barbosa, H. F. Dos Santos, M. J. Ramos, J. Phys. Chem. B 2012, 116, 13644.
D. Leppert, R. L. P. Lindberg, L. Kappos, S. L. Leib, Brain Res. Rev. 2001, 36, 249.
M. Ram, Y. Sherer, Y. Shoenfeld, J. Clin, Immunology 2006, 26, 299.
N. J. Porter, D. W. Christianson, Curr. Op. Struct. Biol. 2019, 59, 9.
L. Ahmad, S. Plancqueel, V. Dubosclard, N. Lazar, W. Ghattas, I. Li De La Sierra-Gallay, H. Van Tilbeurgh, L. Salmon, FEBS Letts. 2018, 592, 1667.
T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
D. Feller, J. Comput. Chem. 1996, 17, 1571.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT 2009.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
Y. Shao, Z. Gan, A. T. B. Gilbert, et al., Mol. Phys 2015, 113, 184.
A. J. Stone, J. Phys. Chem. A. 2011, 115, 701.
D. R. Garmer, W. J. Stevens, J. Phys. Chem. 1989, 93, 8263.
G. A. Evangelakis, J. P. Rizos, I. E. Lagaris, I. N. Demetropoulos, Comput. Phys. Commun. 1987, 46, 401.
M. Devillers, J.-P. Piquemal, L. Salmon, N. Gresh, J. Comput. Chem. 2020, 41, 839.
The HSL Mathematical Software Library; Science and Technology Facilities
N. Gresh, J. Comput. Chem. 1995, 16, 856.
N. Gresh, D. R. Garmer, J. Comput. Chem. 1996, 17, 1481.
A. Marjolin, C. Gourlaouen, C. Clavaguera, N. Gresh, P. Ren, J. Wu, J.-P. Dognon, J.-P. Piquemal, Theo. Chem. Acc. 2012, 131, 1199.
G. Corongiu, E. Clementi, J. Chem. Phys. 1978, 69, 4885.
B. de Courcy, J.-P. Piquemal, C. Garbay, N. Gresh, J. Am. Chem. Soc. 2010, 132, 3312.
N. Gresh, K. El Hage, D. Perahia, J.-P. Piquemal, C. Berthomieu, D. Berthomieu, J. Comput. Chem. 2014, 35, 2096.
N. Gresh, B. de Courcy, J.-P. Piquemal, J. Foret, S. Courtiol-Legourd, L. Salmon, J. Phys. Chem. B 2011, 115, 8304.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.