Detrembleur, Nancy ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Guiot, Julien ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
HENKET, Monique ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Clinique de l'asthme
Ackermann, M., S.E. Verleden, M. Kuehnel, A. Haverich, T. Welte, F. Laenger, A. Vanstapel, C. Werlein, H. Stark, A. Tzankov, et al. 2020. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 383:120-128. https://doi.org/10.1056/NEJMoa2015432
Ali, R.A., A.A. Gandhi, H. Meng, S. Yalavarthi, A.P. Vreede, S.K. Estes, O.R. Palmer, P.L. Bockenstedt, D.J. Pinsky, J.M. Greve, et al. 2019. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun. 10:1916. https://doi.org/10.1038/ s41467-019-09801-x
Ashar, H.K., N.C. Mueller, J.M. Rudd, T.A. Snider, M. Achanta, M. Prasanthi, S. Pulavendran, P.G. Thomas, A. Ramachandran, J.R. Malayer, et al. 2018. The Role of Extracellular Histones in Influenza Virus Pathogenesis. Am. J. Pathol. 188:135-148. https://doi.org/10.1016/j.ajpath.2017.09.014
Bao, L., W. Deng, B. Huang, H. Gao, J. Liu, L. Ren, Q. Wei, P. Yu, Y. Xu, F. Qi, et al. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 583:830-833. https://doi.org/10.1038/s41586-020-2312-y
Barnes, B.J., J.M. Adrover, A. Baxter-Stoltzfus, A. Borczuk, J. Cools-Lartigue, J.M. Crawford, J. Daßler-Plenker, P. Guerci, C. Huynh, J.S. Knight, et al. 2020. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 217. e20200652. https://doi.org/10.1084/jem.20200652
Bendib, I., L. de Chaisemartin, V. Granger, F. Schlemmer, B. Maitre, S. Hüe, M. Surenaud, A. Beldi-Ferchiou, G. Carteaux, K. Razazi, et al. 2019. Neutrophil Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome. Anesthesiology. 130:581-591. https://doi.org/10.1097/ALN.0000000000002619
Bikdeli, B., M.V. Madhavan, A. Gupta, D. Jimenez, J.R. Burton, C. Der Nigoghossian, T. Chuich, S.N. Nouri, I. Dreyfus, E. Driggin, et al; Global COVID-19 Thrombosis Collaborative Group. 2020. Pharmacological Agents Targeting Thromboinflammation in COVID-19: Review and Implications for Future Research. Thromb. Haemost. 120:1004-1024. https://doi.org/10.1055/s-0040-1713152
Boeltz, S., P. Amini, H.-J. Anders, F. Andrade, R. Bilyy, S. Chatfield, I. Cichon, D.M. Clancy, J. Desai, T. Dumych, et al. 2019. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 26:395-408. https://doi.org/10.1038/s41418-018-0261-x
Boone, B.A., P. Murthy, J. Miller-Ocuin, W.R. Doerfler, J.T. Ellis, X. Liang, M.A. Ross, C.T. Wallace, J.L. Sperry, M.T. Lotze, et al. 2018. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 18:678. https://doi.org/10.1186/s12885-018-4584-2
Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science. 303:1532-1535. https://doi.org/10.1126/science.1092385
Caudrillier, A., K. Kessenbrock, B.M. Gilliss, J.X. Nguyen, M.B. Marques, M. Monestier, P. Toy, Z. Werb, and M.R. Looney. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J. Clin. Invest. 122:2661-2671. https://doi.org/10.1172/JCI61303
Chen, N., M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395:507-513. https://doi.org/10.1016/S0140 -6736(20)30211-7
Chrysanthopoulou, A., I. Mitroulis, E. Apostolidou, S. Arelaki, D. Mikroulis, T. Konstantinidis, E. Sivridis, M. Koffa, A. Giatromanolaki, D.T. Boumpas, et al. 2014. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 233:294-307. https://doi.org/10.1002/path.4359
Connors, J.M., and J.H. Levy. 2020. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 135:2033-2040. https://doi.org/10.1182/blood.2020006000
Desilles, J.P., C. Gregoire, C. Le Cossec, J. Lambert, O. Mophawe, M.R. Losser, F. Lambiotte, S. Le Tacon, M. Cantier, N. Engrand, et al. 2020. Efficacy and safety of aerosolized intra-tracheal dornase alfa administration in patients with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS): a structured summary of a study protocol for a randomised controlled trial. Trials. 21:548. https://doi.org/10.1186/ s13063-020-04488-8
Fuchs, H.J., D.S. Borowitz, D.H. Christiansen, E.M. Morris, M.L. Nash, B.W. Ramsey, B.J. Rosenstein, A.L. Smith, and M.E. Wohl; The Pulmozyme Study Group. 1994. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331:637-642. https://doi.org/10.1056/NEJM199409083311003
Giusti, B., A.M. Gori, M. Alessi, A. Rogolino, E. Lotti, D. Poli, E. Sticchi, A. Bartoloni, A. Morettini, C. Nozzoli, et al. 2020. Sars-CoV-2 Induced Coagulopathy and Prognosis in Hospitalized Patients: A Snapshot from Italy. Thromb. Haemost. 120:1233-1236. https://doi.org/10.1055/s-0040 -1712918
Grässle, S., V. Huck, K.I. Pappelbaum, C. Gorzelanny, C. Aponte-Santamaría, C. Baldauf, F. Gräter, R. Schneppenheim, T. Obser, and S.W. Schneider. 2014. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arterioscler. Thromb. Vasc. Biol. 34:1382-1389. https://doi.org/10.1161/ATVBAHA.113.303016
Guan, W.-J., Z.-Y. Ni, Y. Hu, W.-H. Liang, C.-Q. Ou, J.-X. He, L. Liu, H. Shan, C.-L. Lei, D.S.C. Hui, et al; China Medical Treatment Expert Group for Covid-19. 2020. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382:1708-1720. https://doi.org/10.1056/NEJMoa2002032
Hamaguchi, S., M. Seki, N. Yamamoto, T. Hirose, N. Matsumoto, T. Irisawa, R. Takegawa, T. Shimazu, and K. Tomono. 2012. Case of invasive nontypable Haemophilus influenzae respiratory tract infection with a large quantity of neutrophil extracellular traps in sputum. J. Inflamm. Res. 5:137-140. https://doi.org/10.2147/JIR.S39497
Helms, J., C. Tacquard, F. Severac, I. Leonard-Lorant, M. Ohana, X. Delabranche, H. Merdji, R. Clere-Jehl, M. Schenck, F. Fagot Gandet, et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). 2020. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 46:1089-1098. https://doi.org/10.1007/s00134-020-06062-x
Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
Jorch, S.K., and P. Kubes. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23:279-287. https://doi.org/10.1038/nm.4294
Kahlenberg, J.M., C. Carmona-Rivera, C.K. Smith, and M.J. Kaplan. 2013. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190:1217-1226. https://doi.org/10.4049/jimmunol.1202388
Konstan, M.W., J.S. Wagener, D.J. Pasta, S.J. Millar, J.R. Jacobs, A. Yegin, and W.J. Morgan; Scientific Advisory Group and Investigators and Coordinators of Epidemiologic Study of Cystic Fibrosis. 2011. Clinical use of dornase alpha is associated with a slower rate of FEV1 decline in cystic fibrosis. Pediatr. Pulmonol. 46:545-553. https://doi.org/10.1002/ppul.21388
Laridan, E., K. Martinod, and S.F. De Meyer. 2019. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin. Thromb. Hemost. 45: 86-93. https://doi.org/10.1055/s-0038-1677040
Lefrançais, E., B. Mallavia, H. Zhuo, C.S. Calfee, and M.R. Looney. 2018. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 3. e98178. https://doi.org/10.1172/jci.insight.98178
Li, S., L. Jiang, X. Li, F. Lin, Y. Wang, B. Li, T. Jiang, W. An, S. Liu, H. Liu, et al. 2020. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 5. e138070. https://doi.org/10.1172/jci.insight.138070
Mangold, A., S. Alias, T. Scherz, T. Hofbauer, J. Jakowitsch, A. Panzenböck, D. Simon, D. Laimer, C. Bangert, A. Kammerlander, et al. 2015. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 116:1182-1192. https://doi.org/10.1161/CIRCRESAHA.116.304944
Meher, A.K., M. Spinosa, J.P. Davis, N. Pope, V.E. Laubach, G. Su, V. Serbulea, N. Leitinger, G. Ailawadi, and G.R. Upchurch, Jr.. 2018. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 38:843-853. https://doi.org/10.1161/ATVBAHA.117.309897
Meng, H., S. Yalavarthi, Y. Kanthi, L.F. Mazza, M.A. Elfline, C.E. Luke, D.J. Pinsky, P.K. Henke, and J.S. Knight. 2017. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 69:655-667. https://doi.org/10.1002/art.39938
Middleton, E.A., X.-Y. He, F. Denorme, R.A. Campbell, D. Ng, S.P. Salvatore, M. Mostyka, A. Baxter-Stoltzfus, A.C. Borczuk, M. Loda, et al. 2020. Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood. blood.2020007008. https://doi.org/10.1182/blood.2020007008
Mikacenic, C., R. Moore, V. Dmyterko, T.E. West, W.A. Altemeier, W.C. Liles, and C. Lood. 2018. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit. Care. 22:358. https://doi.org/10.1186/s13054-018-2290-8
Moorthy, A.N., P. Rai, H. Jiao, S. Wang, K.B. Tan, L. Qin, H. Watanabe, Y. Zhang, N. Teluguakula, and V.T.K. Chow. 2016a. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia. Oncotarget. 7: 19327-19340. https://doi.org/10.18632/oncotarget.8451
Moorthy, A.N., K.B. Tan, S. Wang, T. Narasaraju, and V.T. Chow. 2016b. Effect of High-Fat Diet on the Formation of Pulmonary Neutrophil Extracellular Traps during Influenza Pneumonia in BALB/c Mice. Front. Immunol. 7:289. https://doi.org/10.3389/fimmu.2016.00289
Mozzini, C., and D. Girelli. 2020. The role of Neutrophil Extracellular Traps in Covid-19: Only an hypothesis or a potential new field of research? Thromb. Res. 191:26-27. https://doi.org/10.1016/j.thromres.2020.04.031
Murthy, P., A.D. Singhi, M.A. Ross, P. Loughran, P. Paragomi, G.I. Papachristou, D.C. Whitcomb, A.H. Zureikat, M.T. Lotze, H.J. Zeh Iii, et al. 2019. Enhanced Neutrophil Extracellular Trap Formation in Acute Pancreatitis Contributes to Disease Severity and Is Reduced by Chloroquine. Front. Immunol. 10:28. https://doi.org/10.3389/fimmu.2019.00028
Narasaraju, T., E. Yang, R.P. Samy, H.H. Ng, W.P. Poh, A.-A. Liew, M.C. Phoon, N. van Rooijen, and V.T. Chow. 2011. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179:199-210. https://doi.org/10.1016/j.ajpath.2011.03.013
Narasaraju, T., B.M. Tang, M. Herrmann, S. Muller, V.T.K. Chow, and M. Radic. 2020. Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19. Front. Pharmacol. 11:870. https://doi.org/10.3389/fphar.2020.00870
Papayannopoulos, V. 2018. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:134-147. https://doi.org/10.1038/nri.2017.105
Porto, B.N., and R.T. Stein. 2016. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing? Front. Immunol. 7:311. https://doi.org/10.3389/fimmu.2016.00311
Radermecker, C., C. Sabatel, C. Vanwinge, C. Ruscitti, P. Maréchal, F. Perin, J. Schyns, N. Rocks, M. Toussaint, D. Cataldo, et al. 2019. Locally instructed CXCR4hi neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat. Immunol. 20:1444-1455. https://doi.org/10.1038/s41590-019-0496-9
Rocks, N., C. Vanwinge, C. Radermecker, S. Blacher, C. Gilles, R. Marée, A. Gillard, B. Evrard, C. Pequeux, T. Marichal, et al. 2019. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax. 74:768-779. https://doi.org/10.1136/thoraxjnl-2018-211990
Savchenko, A.S., K. Martinod, M.A. Seidman, S.L. Wong, J.I. Borissoff, G. Piazza, P. Libby, S.Z. Goldhaber, R.N. Mitchell, and D.D. Wagner. 2014. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J. Thromb. Haemost. 12:860-870. https://doi.org/10.1111/jth.12571
Schönrich, G., and M.J. Raftery. 2016. Neutrophil Extracellular Traps Go Viral. Front. Immunol. 7:366. https://doi.org/10.3389/fimmu.2016.00366
Sil, P., H. Wicklum, C. Surell, and B. Rada. 2017. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation. Inflamm. Res. 66:227-237. https://doi.org/10.1007/s00011-016-1008-0
Spyropoulos, A.C., J.H. Levy, W. Ageno, J.M. Connors, B.J. Hunt, T. Iba, M. Levi, C.M. Samama, J. Thachil, D. Giannis, et al; Subcommittee on Perioperative, Critical Care Thrombosis, Haemostasis of the Scientific, Standardization Committee of the International Society on Thrombosis and Haemostasis. 2020. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 18:1859-1865. https://doi.org/10.1111/jth.14929
Tang, N., D. Li, X. Wang, and Z. Sun. 2020. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18:844-847. https://doi.org/10.1111/jth.14768
Terpos, E., I. Ntanasis-Stathopoulos, I. Elalamy, E. Kastritis, T.N. Sergentanis, M. Politou, T. Psaltopoulou, G. Gerotziafas, and M.A. Dimopoulos. 2020. Hematological findings and complications of COVID-19. Am. J. Hematol. 95:834-847. https://doi.org/10.1002/ajh.25829
Thierry, A.R., and B. Roch. 2020. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin. Sci. (Lond.). 134:1295-1300. https://doi.org/10.1042/CS20200531
Tomar, B., H.-J. Anders, J. Desai, and S.R. Mulay. 2020. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells. 9:1383. https://doi.org/10.3390/cells9061383
Toussaint, M., D.J. Jackson, D. Swieboda, A. Guedán, T.D. Tsourouktsoglou, Y.M. Ching, C. Radermecker, H. Makrinioti, J. Aniscenko, N.W. Bartlett, et al. 2017. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat. Med. 23:681-691. https://doi.org/10.1038/nm.4332
Twaddell, S.H., K.J. Baines, C. Grainge, and P.G. Gibson. 2019. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 156:774-782. https://doi.org/10.1016/j.chest.2019.06.012
Wagers, S.S., R.J. Norton, L.M. Rinaldi, J.H.T. Bates, B.E. Sobel, and C.G. Irvin. 2004. Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. J. Clin. Invest. 114: 104-111. https://doi.org/10.1172/JCI200419569
Wang, D., B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, et al. 2020. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 323:1061-1069. https://doi.org/10.1001/jama.2020.1585
Warnatsch, A., M. Ioannou, Q. Wang, and V. Papayannopoulos. 2015. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 349:316-320. https://doi.org/10.1126/science.aaa8064
Wichmann, D., J.-P. Sperhake, M. Lütgehetmann, S. Steurer, C. Edler, A. Heinemann, F. Heinrich, H. Mushumba, I. Kniep, A.S. Schröder, et al. 2020. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 173: 268-277. https://doi.org/10.7326/M20-2003
Wu, F., S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.H. Tian, Y.-Y. Pei, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature. 579:265-269. https://doi.org/10.1038/s41586-020-2008-3
Xu, Z., L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, S. Liu, P. Zhao, H. Liu, L. Zhu, et al. 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8:420-422. https://doi.org/10.1016/S2213-2600(20)30076-X
Yaqinuddin, A., and J. Kashir. 2020. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med. Hypotheses. 143. 109906. https://doi.org/10.1016/j.mehy.2020.109906
Yaqinuddin, A., P. Kvietys, and J. Kashir. 2020. COVID-19: Role of neutrophil extracellular traps in acute lung injury. Respir. Investig. 58:419-420. https://doi.org/10.1016/j.resinv.2020.06.001
Yildiz, C., N. Palaniyar, G. Otulakowski, M.A. Khan, M. Post, W.M. Kuebler, K. Tanswell, R. Belcastro, A. Masood, D. Engelberts, et al. 2015. Mechanical ventilation induces neutrophil extracellular trap formation. Anesthesiology. 122:864-875. https://doi.org/10.1097/ALN.0000000000000605
Zhang, X., Y. Tan, Y. Ling, G. Lu, F. Liu, Z. Yi, X. Jia, M. Wu, B. Shi, S. Xu, et al. 2020. Viral and host factors related to the clinical outcome of COVID-19. Nature. 583:437-440. https://doi.org/10.1038/s41586-020-2355-0
Zhou, F., T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 395:1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Zuo, Y., S. Yalavarthi, H. Shi, K. Gockman, M. Zuo, J.A. Madison, C. Blair, A. Weber, B.J. Barnes, M. Egeblad, et al. 2020. Neutrophil extracellular traps in COVID-19. JCI Insight. 5. e138999. https://doi.org/10.1172/jci.insight.138999