inerter; force feedback; nonlinear energy sink; targeted energy transfer; resonance capture cascade
Abstract :
[en] In this paper, an active nonlinear energy sink (ANES) based on force feedback is investigated. The proposed device is composed of a pair of collocated actuator and force sensor. The control law is implemented by feeding back the output of the force sensor, through one single and one double integrator of its cube. Its working principle can be understood by an equivalent mechanical network which consists of a dashpot, an inerter and a cube root inerter. Although the nonlinear assignment between the spring and mass or inerter quantities is different from that of traditional nonlinear energy sinks (NESs), it is found that ANES and NES behave similarly in terms of their slow- scale dynamics and the vibration mitigation effectiveness. The damping mechanism of ANES through targeted energy transfer and resonance capture cascade is demonstrated. Closed-form expressions for properly tuning the feedback gains are derived. Numerical simulations are performed to validate the analytical analysis.
Wang, F.-Y., Gao, Y.: Advanced Studies of Flexible Robotic Manipulators. World Scientific, Singapore (2003) DOI: 10.1142/5290
Darecki, M., Edelstenne, C., Enders, T., Fernandez, E., Hartman, P., Herteman, J.-P., Kerkloh, M., King, I., Ky, P., Mathieu, M., Orsi, G., Schotman, G., Smith, C., Wörner, J.-D.: Flightpath 2050. Flightpath 2050 Eur. Vis. Aviat. 28 (2011). 10.2777/50266
Den Hartog, J.P.: Mechanical Vibrations. Dover Publications, New York (1985)
Warburton, G.B.G.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10, 381–401 (1982). 10.1002/eqe.4290100304 DOI: 10.1002/eqe.4290100304
von Flotow, A.H., Beard, A., Bailey, D.: Adaptive tuned vibration absorbers: tuning laws, tracking agility, sizing, and physical implementations. In: Adaptive Tuned Vibration Absorbers: Tuning Laws, Tracking Agility, Sizing, and Physical Implementations, pp. 437–454. Noise-con 94, Fort Lauderdale, New York (1994)
Gendelman, O., Manevitch, L.I., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: Part I—dynamics of the underlying hamiltonian systems. J. Appl. Mech. Trans. ASME 68, 34–41 (2001). 10.1115/1.1345524 DOI: 10.1115/1.1345524
Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: Part II—resonance capture. J. Appl. Mech. Trans. ASME 68, 42–48 (2001). 10.1115/1.1345525 DOI: 10.1115/1.1345525
Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D Nonlinear Phenom. 204, 41–69 (2005). 10.1016/j.physd.2005.03.014 DOI: 10.1016/j.physd.2005.03.014
Kerschen, G., Lee, Y.S., Vakakis, A.F., Mcfarland, D.M., Bergman, L.A.: Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J. Appl. Math. 66, 648–679 (2006). 10.1137/040613706 DOI: 10.1137/040613706
Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Sup, L.Y.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)
Ture Savadkoohi, A., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67, 37–46 (2012). 10.1007/s11071-011-9955-z DOI: 10.1007/s11071-011-9955-z
Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks Part I: Design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011). 10.1007/s11071-011-9949-x DOI: 10.1007/s11071-011-9949-x
Tripathi, A., Grover, P., Kalmár-Nagy, T.: On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems. J. Sound Vib. 388, 272–297 (2017). 10.1016/j.jsv.2016.10.025 DOI: 10.1016/j.jsv.2016.10.025
Dekemele, K., De Keyser, R., Loccufier, M.: Performance measures for targeted energy transfer and resonance capture cascading in nonlinear energy sinks. Nonlinear Dyn. 93, 259–284 (2018). 10.1007/s11071-018-4190-5 DOI: 10.1007/s11071-018-4190-5
Qiu, D., Seguy, S., Paredes, M.: Design criteria for optimally tuned vibro-impact nonlinear energy sink. J. Sound Vib. 442, 497–513 (2019). 10.1016/j.jsv.2018.11.021 DOI: 10.1016/j.jsv.2018.11.021
Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). 10.1016/j.jsv.2019.03.014 DOI: 10.1016/j.jsv.2019.03.014
Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019). 10.1016/j.ymssp.2019.04.047 DOI: 10.1016/j.ymssp.2019.04.047
Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Automat. Control 47, 1648–1662 (2002). 10.1109/TAC.2002.803532 DOI: 10.1109/TAC.2002.803532
Preumont, A., François, A., Bossens, F., Abu-Hanieh, A.: Force feedback versus acceleration feedback in active vibration isolation. J. Sound Vib. 257, 605–613 (2002). 10.1006/jsvi.2002.5047 DOI: 10.1006/jsvi.2002.5047
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C.: Active nonlinear inerter damper for vibration mitigation of Duffing oscillators. J. Sound Vib. 473, 115236 (2020). 10.1016/j.jsv.2020.115236 DOI: 10.1016/j.jsv.2020.115236
Zhao, G., Raze, G., Paknejad, A., Deraemaeker, A., Kerschen, G., Collette, C.: Active tuned inerter-damper for smart structures and its H∞ optimisation. Mech. Syst. Signal Process. 129, 470–478 (2019). 10.1016/j.ymssp.2019.04.044 DOI: 10.1016/j.ymssp.2019.04.044
Zhao, G., Paknejad, A., Deraemaeker, A., Collette, C.: H∞ optimization of an integral force feedback controller. J. Vib. Control 25, 2330–2339 (2019). 10.1177/1077546319853165 DOI: 10.1177/1077546319853165
Sun, K., Liu, L., Qiu, J., Feng, G.: fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). 10.1109/TFUZZ.2020.2965890
K., S., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020). 10.1109/TFUZZ.2020.2979129
Sun, K., Qiu, J., Karimi, H.R., Gao, H.: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Trans. Syst. Man Cybern. Syst. (2020). 10.1109/TSMC.2019.2958072
Preumont, A.: Vibration Control of Active Structures. Springer, Netherlands, Dordrecht (2011) DOI: 10.1007/978-94-007-2033-6
Manevitch, L.: Complex representation of dynamics of coupled nonlinear oscillators. Mathematical Models of Non-linear Excitations. Transfer, Dynamics, and Control in Condensed Systems and Other Media, pp. 269–300. Kluwer Academic, Tver, Russia (1999)
Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004). 10.1023/B:NODY.0000042911.49430.25 DOI: 10.1023/B:NODY.0000042911.49430.25
Habib, G., Detroux, T., Viguié, R., Kerschen, G.: Nonlinear generalization of Den Hartog’s equal-peak method. Mech. Syst. Signal Process. 52–53, 17–28 (2015). 10.1016/j.ymssp.2014.08.009 DOI: 10.1016/j.ymssp.2014.08.009
Chesné, S., Milhomem, A., Collette, C.: Enhanced damping of flexible structures using force feedback. J. Guid. Control Dyn. 39, 1654–1658 (2016). 10.2514/1.G001620 DOI: 10.2514/1.G001620