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Abstract  

In this paper, an active nonlinear energy sink (ANES) based on force feedback is 

investigated. The proposed device is composed of a pair of collocated actuator and 

force sensor. The control law is implemented by feeding back the output of the force 

sensor, through one single integrator and one double integrator of its cube. Its 

working principle can be understood by an equivalent mechanical network which 

consists of a linear dashpot, linear spring and a cube root inerter. Although the 

nonlinear assignment between the spring and mass or inerter quantities is different 

from that of traditional nonlinear energy sinks (NESs), it is found that ANES and 

NES behave similarly in terms of their slow-scale dynamics and the vibration 

mitigation effectiveness. Closed-form expressions for properly tuning the feedback 

gains are derived. Numerical simulations are performed to validate the analytical 

analysis. The damping mechanism of ANES through targeted energy transfer and 

resonance capture cascade is demonstrated. 

Keywords: Inerter, force feedback, nonlinear energy sink, targeted energy transfer, 

resonance capture cascade 
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1. Introduction 

Lightweight materials have been more and more used for system constructions in many engineering 

applications for the sake of fuel efficiency and reduction of environmental pollution [1, 2]. 

However, this will often make these structures lightly damped and responses could be unacceptably 

amplified around the resonance, causing many problems such as reduction of structural integrity, 

compromise of instrument functionality and even threat to human lives. In this sense, proper 

damping techniques need to be considered in parallel with the future design of lightweight 

structures. A tuned mass damper (TMD) [3] which typically consists of a proof mass and a spring-

dashpot pair is often employed for such purpose. It acts as an auxiliary system to the host structures 

where additional damping is needed. The natural frequency of the added TMD is often suggested 

to be roughly equal to one of the resonance frequencies of the host structure [4]. In this way, the 

vibration energy associated with the considered mode can be quickly transferred and localised in 

the TMD where it is eventually dissipated. Due to this nature, TMDs are only effective around one 

particular vibration mode. Deviation from the desired settings can also degrade their performance 

[5]. In addition, one single TMD is only capable of dealing with one specified vibration mode to 

which it is tuned. 

An interesting nonlinear damping alternative i.e. a nonlinear energy sink (NES) was proposed 

aiming to overcome these limitations [6, 7]. A NES is often realised by a proof mass, a dashpot and 

a cubic nonlinear spring. The working principle of NESs is a bit different from that of TMDs, the 

host structure energy is in fact irreversibly transferred to NESs and dissipated therein. As there are 

only nonlinear resilient elements within NESs, the natural frequency is not essentially fixed but is 

rather dependent on the vibration amplitude. This allows NESs to interact basically with every 

mode of the host structure and also makes them insensitive to parameter variations of the host 

structure. Substantial work has been done to better understand the underlying dynamics of NESs, 

see for example [8–13]. In the transient regime, it has been illustrated that there exists a threshold 

in terms of the vibration energy level of the host structure above which NESs start to work 

efficiently i.e. where targeted energy transfer (TET) occurs. TET is defined as a one-way 

irreversible transfer of energy from the host structure to the NES. Some design guidelines for 

properly choosing the parameters, namely the nonlinear stiffness and the damping coefficient to 

initiate TET have been established [12, 14]. Other possibilities for implementing NESs than using 

a cubic nonlinear spring have been also explored [15, 16]. As for the last parameter of NESs, a 

heavier proof mass is preferable, similarly to that for TMDs. However, the added mass may be 

penalizing in light weight applications, e.g. automotive and aerospace structures. Zhang et al. [17] 

and Javidialesaadi and Wierschem [18] proposed to integrate inerters into NESs aiming to boost 

the performance as the inertance of inerters can be significantly greater than their actual mass [19, 

20]. Although the potential of NESs is promising, it is quite challenging to realise them in practice 
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because attaching them to the host structure with a pure cubic spring without any linear resilient 

parts remains a challenge.   

In order to bypass the aforementioned practical issues, an active nonlinear sink using a novel force 

feedback controller is proposed in this work. A force sensor is chosen since the control plant for 

the corresponding underlying linear active system always possesses alternating poles and zeros, 

which would ease the design concern on the stability of the closed loop [21]. The control law is 

formed by feeding back the output of the force sensor through one single integrator and one double 

integrator of its cube. The control concept is actually built upon the previous developments [22] 

where the linear double integrator is removed from the chain. In this way, the proposed ANES can 

be understood to play the same role as a pure mechanical system which consists of a cube root 

inerter, a linear dashpot and a linear spring according to previous derivations in [22–24]. Although 

the nonlinear assignment of the proposed ANES is different from that of traditional NESs, it is 

found that ANES and NES behave similarly in terms of vibration mitigation effectiveness. Some 

other interesting work dealing with control of nonlinear systems can be found in [25–27]. The 

principal contributions of the work presented are: a) the development of the equivalent mechanical 

model which enables a straightforward interpretation of the physics behind the active control law, 

b) the derivation of the ANES tuning law in closed-form, and c) the equivalence examination 

between an ANES and a mechanical NES which opens the door for the real-time tuning of control 

parameters of an active nonlinear energy sink. 

The rest of paper is organised as follows. In the next section, the mathematical model of the system 

under consideration is developed. In Section 3, the tuning law of ANES for a single-degree-of-

freedom (SDOF) system is derived and numerically verified. This tuning law is extended to a multi-

degree-of-freedom system (MDOF) in Section 4. Conclusions are drawn in Section 5. 

2. Mechanical representation of an ANES  

The system under investigation is shown in Fig. 1 (a). It represents a linear MDOF system which 

is equipped with a massless actuator whose stiffness is denoted by 
ak . A collocated force sensor 

which measures the transmission force denoted by 
sF  is installed between the actuator and the 

primary structure. The control loop is implemented by feeding the output of the force sensor 
sF  

through a nonlinear controller  su F  to drive the actuator. In this work, the transient behaviour of 

the system is of interest and no external disturbance force is applied.  

The governing equations of the coupled system can be written as: 

        st t t F t  MX CX KX b  (1) 

       s s aF t u F t k t  T
b X  (2) 
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where n nM , n nC  and n nK  represent the mass, damping and stiffness matrix, 

respectively, 1nX  the displacement vector,   10 1 0 1 0 n

l k

  b  the 

actuator connection vector and 
sF  a scalar representing the force that acts on the structure 

(measured by the force sensor). Note that in the considered sketch the actuator is mounted to the 

primary structure through two attachment points where a pair of control forces are injected into the 

primary structure. Alternatively, the actuator can be also placed between the ground and the 

primary structure such that there is only one attachment point. In this case, a point control force is 

applied by the actuator. The two configurations make no difference in terms of the working 

principle of the ANES, but the connection vector b  has to be adapted accordingly such that the 

ANES parameters can be correctly configured.    

Note that the mass of the transducer is tacitly neglected in the paper. As a result, the validity of Eq. 

(1) should be restricted to frequencies well below the resonance frequencies of the transducer. In 

addition, lumped masses of the transducer can be included at the associated DOFs to compensate 

statically the shift of the resonance frequencies when the mass of the transducer is relatively large.    

The nonlinear controller  su F  is built upon the controllers proposed in [22, 23], but modified to 

have a dynamic behaviour similar to that of NESs. The controller  su F  reads: 

   3

3

0 0 0

d d d

t t t

s s s d su F g F t g F t t       (3) 

The working principle of the proposed controller can be better understood from a pure mechanical 

point of view. As illustrated in Appendix A, the function of the component with the single integrator 

in Eq. (3) behaves as a mechanical dashpot, and that with the double integrator resembles a cube 

root inerter. Together with the inherent spring of the actuator, the active system can be represented 

by a pure mechanical network composed by a linear spring, a linear dashpot and a cube root inerter 

connected in series. As such, the equivalent mechanical representation of the considered system is 

shown in Fig. 1 (b). The equivalent damping coefficient and the inertance are linked with the 

feedback gains according to:  

 3
3 3;a a s a a dd k g m k g   (4) 
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Fig. 1 (a) the sketch of the coupled system and (b) its equivalent mechanical representation  

Because of the full analogy with a mechanical network, the stability of the active system is 

guaranteed given idealised force sensors and actuators are employed. According to the Lyapunov’s 

linearisation theory [28], the actual nonlinear system is asymptotically stable at the equilibrium 

point if the corresponding linearised system is strictly stable. For the proposed ANES, the linearised 

system around the trivial state corresponds to the primary structure coupled with a classical integral 

force feedback controller. As demonstrated in [24, 29], the theoretical gain margin is infinity and 

the phase margin is 2  for the linearised system. However, the Lyapunov’s linearisation theory 

is only valid for small range of motions around the equilibrium points (a local stability theorem) 

and it is not yet clear what are the boundary conditions for the linearisation approximations to hold 

(global al stability theorem is needed). It is left for the subject of future work. 

Although it is referred to as ‘active nonlinear energy sink’, it is actually implemented in a way 

different than that for NES.  Within ANES, the mass-like quantity i.e. the cube root inerter is 

nonlinear and coupled with a linear spring and a dashpot in series, while a classical NES features 

a linear mass supported by a nonlinear spring and a linear dashpot. Despite this difference, it is 

found later in the paper that the working principle and the corresponding control effectiveness of 

the two devices are similar. 

Substituting Eq. (3) into Eq. (2), and transforming the resulting governing equations into modal 

coordinates according to    t tX EQ  where  1 2

n n

n

 E e e e  is the matrix of mode 

shapes and 1nQ  the associated modal coordinates yields:  

        T

q q q st t t F t  M Q C Q K Q E b  (5) 
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    3

3

0 0 0

d d d

t t t

T

s s s d s aF t g F t g F t t k t      b EQ  (6) 

where 
T

q M E ME  is the diagonal modal mass matrix, 
T

q K E KE  the diagonal modal stiffness 

matrix and 
T

q C E CE  the diagonal modal damping matrix assuming that the primary structure is 

lightly damped and C  is considered to be proportional to M and K  ( , ,      C M K ). 

Consider now that the system only vibrates at the resonance frequency associated with mode i  such 

that 
1

( ) ( ) ( ) ( )
n

m m i i

m

t t q t q t


  X EQ e e  is valid. Eqs. (5) and (6) can be thus rewritten as: 

        , , , ,q i i q i i q i i s im q t c q t k q t f t    (7) 

      
3

, , 3, , ,

0 0 0

d d d

t t t

s i s s i d i s i a i if t g f t g f t t k q t       (8) 

where    i i ie l k  e e ,  ,s i i sf e F t  , 
2

3, 3d i d ig g e   and 
2

,a i a ik k e  .    

kq,i

mq,i
qi

fa,i

 fs,i

da,i

(a)

ka,i

ka,i

(b)

cq,i

ma3,i

cq,i kq,i

qi
mq,i

 

Fig. 2 (a) The representative model of the whole system for one vibration mode and (b) its 

equivalent mechanical model. 

The characteristic equations defined by Eqs. (7) and (8) actually correspond to a system as depicted 

in Fig. 2 (a). This system is defined through a lumped mass ,q im  suspended from the ground by a 

linear spring ,q ik , a dashpot ,q ic  and the actuator whose stiffness is denoted by 
,a ik . The variables 

,q im , ,q ik  and ,q ic  represent the modal mass, stiffness and damping coefficient of the primary 

structure for mode i , while 
,s if , 3,d ig , 3,d ig and ,a ik  are the corresponding equivalent transmission 

force, the nonlinear feedback gain, the linear feedback gain and the actuator stiffness of the ANES 

for mode i . The corresponding equivalent mechanical model is given in Fig. 2 (b). In the 

forthcoming section, the simplified system in Fig. 2 (a) will be used to study the ANES 

characteristics with the aim to derive practical guidelines for the design of an effective ANES. 
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3. ANES Tuning for SDOF systems 

3.1 Semi-analytic reduction   

The parameters:  

 

 

1 2 , , , ,

23 2

, , 1 , 1 , 3, ,

, , , ,

, , ,

i s i a i i q i q i i

sn n

a i q i q i a i s i d i a i i

x q x f k k m t

k k c k g g g g k

  

    

   

   
  (9) 

are introduced to normalise the governing equations Eqs. (7) and (8):  

 
1 1 1 1 2 0x x x x        (10) 

 
3 3

2 2 2 1 0sn nx g x g x x        (11) 

where ' denotes derivation with respect to (w.r.t.) the time scale  .  

Under the assumption of 1:1 resonance and the system vibrates along mode i , complex variables 

are introduced to reduce the order of the differential equations [30]: 

    1 1 1 2 2 2;j je x jx e x jx           (12) 

where 1j   .  

Substituting Eq. (12) into Eqs. (10) and (11) yields: 

 
2 2 1 1

1 1 0
2 2

j j j j
j e e e e

e
j

   
    

  
          (13) 

 
 

3

2 231 1 2 2 2 2
1 2 0

2 2 8

j jj j j j j j
j j sn n

e ee e e e e e
e e g g j

j

      
 

      
 

                  (14) 

where   denotes complex conjugate.  

Each complex variable is decomposed into power series of the stiffness ratio   ( 1 ) as follows:  

  2

0 1 , 1, 2i i i i         (15) 

where 
0i  is the dominant term and 

1i  the small perturbation term. Here, the expansions are 

truncated for  2 .  

The multiple scales method [31] is applied to Eq. (15) to better approximate the system dynamics. 

This method assumes that the dynamics behave according to several discrete time scales. In this 

paper, 0   and 1   representing the fast and the slow time scales are considered; they are 

related to the original time scale as: 

 
0 1

d

d


  

 
 
 

  (16) 

Substituting Eqs. (15) and (16) into Eqs. (13) and (14), one obtains: 
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   20 21 1 10 11210 10 11 11

0 1 0 1

0
2 2

j        
  

   

    
     

   
  (17) 

 
   

    

2 210 10 20 2011 11 21 21

0 1 0 1 0 1 0 1

10 11 20 21 20 21

2 2 2 23 2 2 2 3

20 20 21 20 20 21 20 21 20 21 21 21

2 2

3 2 2
0

8

sn

n

j g

g j

      
     

       

     

               

      
       

       

   
  

    


  (18) 

where the secular terms w.r.t. the time scale 0  are eliminated.  

Collecting the terms according to the different orders of the stiffness ratio   in Eqs. (17) and (18)

, one obtains:  

  010

0

0






 


 (19) 

 
 

 
23

20 2010 20 010 20 20

0 0

3
0

2 2 8

nsn g jj g     


 

 
     

 
 (20) 

  110 20 1 1011

1 0

0
2 2

j   


 

 
    

 
 (21) 

Eq. (19) means that the leading variable 10  does not depend on 0 . This indicates that  10 0 1,    

can be approximated using only its slowly-varying component  10 1  . Substituting Eq. (19) into 

Eq. (20), the resulting expression describes how 20  evolves w.r.t. the time scale 0 . For this one-

dimensional system, it was shown in [32] that 20  ultimately converge to the steady-state solutions 

of Eq. (20) as: 

 
 

23

20 2010 20 20
3

0
2 2 8

nsn g jj g    
    (22) 

Note that the solutions of Eq. (22) neglect the transient dynamics of  20 0 1,    at the fast time 

scale, which also means that they are sought by taking the limit 0  . 

Proceeding now to Eq. (21) and taking the above ansatz 0  , the secular term w.r.t. the time 

scale 0  i.e. 
11

0








 is omitted and one obtains: 

 
10 20 1 10

1

0
2 2

j   




  


 (23) 

Up to now, it is possible to solve the slowly-varying components  10 1   and 

   
0

20 1 20 0 1lim ,


    


  from Eqs. (22) and (23). Specifically,  20 1   represents the trend of 20  

after eliminating the fast oscillations.  
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In order to further simplify the analysis, a polar decomposition of the complex variables is 

introduced: 

        1 1 2 1

10 1 1 20 2 1,
j j

R e R e
   

      (24) 

where iR   is the amplitude of i , and i  the corresponding phase.  

Substituting Eq. (24) into Eqs. (22) and (23) yields: 

 
 2 2 11 1 1

1

sin
0

2 2

RR R  




  


 (25) 

 
 2 2 11

1

1

cos
0

2

R
R

 




 


 (26) 

 
  3 3

1 1 2 2 2
cos 3

0
2 8

nR R R g  
   (27) 

 
 1 1 2 2

sin
0

2 2

snR R g  
   (28) 

Eliminating the phase difference 1 2   from Eqs. (27) and (28) gives: 

  
2

2
2 2 3 2

1 2 2

3
1

4

sn nR R g g R
  

       
 (29) 

Taking the expression for  1 2sin   in Eq. (28) and substituting it into Eq. (25), one obtains: 

 

2 2

1 2 1 1
1

1 2 2

snR g R R
R






  


 (30) 

Further simplifications can be made by taking 
2

k kE R , 1,2k   which gives: 

    
2 2 2 1

1 10 1 1E x x      (31) 

     
0

2 2 2 1

2 20 2 2limE x x


 


     (32) 

Variables 1E  and 2E  play a similar role similar to the normalised energy of the primary structure 

and the attached active system, respectively.       

Substituting Eqs. (31) and (32) into Eqs.(30) and (29), the system dynamics are governed by: 

 
1

1 1 2

1

snE
E g E




  


 (33) 

  
2

2
3

1 2 2

3
1

4

sn nE E g g E
  

       
 (34) 

Eq. (33) describes how the energy-like quantities 
1E  and 

2E  dynamically evolve w.r.t. the slow 

time scale 
1 , while Eq. (34) regulates them statically. Because the normalised damping factors 

1  
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and sng  as well as 
1E  and 

2E  are positive variables, the gradient of the primary structure energy 

1E  w.r.t. the slow time scale is always negative, as seen from Eq. (33). This means that the primary 

structure’s energy will always be dissipated over the slow flow time. On the other hand, the 

evolution of 
2E  is governed by 

1E  following a nonlinear algebraic expression Eq. (34) where only 

the control parameters sng  and 3ng  are present. Thanks to this nonlinear relation, TET from the 

primary structure to the ANES can occur. The semi-analytic governing equations (33) and (34) are 

identical to those obtained in [14] for a mechanical NES provided the time scale in [14] is changed 

to a dimensionless quantity w.r.t. the resonance frequency of the primary structure. From this 

perspective, the normalised feedback gains sng  and 3ng  play the same role as the damping ratio 

and the nonlinear frequency ratio associated with a mechanical NES. This is logical as they 

correspond to a normalised dashpot and cube root inerter, respectively. We also note that switching 

nonlinear assignments between the spring and mass or inerter quantities does not significantly 

change the control effectiveness of the resulting device if one compares  the active nonlinear inerter 

damper in [22] with the nonlinear tuned mass damper in [33]. However, it should be noticed that 

1E  and 
2E  in this paper correspond to the absolute motion of the primary mass and the 

transmission force induced by an ANES, while for the mechanical NES they are related to the 

motion of the center of mass and the relative motion between the primary and NES masses. Despite 

this difference, the tuning law of an ANES that triggers TET based on Eqs. (33) and (34) is foreseen 

to be the similar to that obtained as in [14].  

Two new variables 
3

1 1

nZ g E  and 
3

2 2

nZ g E  are now introduced. In addition, the damping factor 

of the primary structure is omitted. Eqs. (33) and (34) are thus rewritten as: 

 1
2

1

snZ
g Z




 


 (35) 

  
2

2

1 2 2

3
1

4

snZ Z g Z
  

       

 (36) 

In order to better study the underlying dynamics, Eq. (36) is differentiated w.r.t. 
2Z , which gives: 

 

 

 

2
21

2 2

2

2
2

2

27
3 1

16

3 2 1
3

4 3 3

sn

sn

Z
Z Z g

Z

Z g


   



 
    

 

 (37) 

Eq. (37) is a quadratic equation which is always positive if 1 3sng  . If this is the case, 
1Z  will 

monotonically increase/decrease with an increase/decrease of 
2Z . Because Eq. (35) indicates that 

1Z  is always reduced w.r.t. the slow time scale, 
2Z  will follow the same trend whereby no energy 

is fed into the ANES and thus no TET occurs. If 1 3sng  , Eq. (37) has two roots 1

2Z   and 2

2Z   

( 1 2

2 2 2, , 1,2iZ Z Z i  

    ). It remains positive when 
2Z  is either smaller than 1

2Z   or greater than 

2

2Z  . Otherwise, Eq. (37) becomes negative meaning that the energy in the primary structure and in 

the ANES can flow in opposite ways. In this case, when plotted against 
2 : 0Z  , 

1Z  exhibits a 
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maximum followed by a minimum due to the changing sign of its derivative w.r.t. 
2Z ; it is initially 

positive, then negative and finally positive again. In addition, three solutions of 
2Z  can be found 

for 
1Z  bounded between the two extrema. In summary, TET can occur as discussed in [14, 15] 

provided that: 

 
1

3

sng   (38) 

The solutions to Eq. (37), i.e. 1

2Z   and 2

2Z  , and the corresponding extreme values can be derived: 

     
 

2

2 2
max 1

1 2

4 1 38 8
4 1 3 3 1 3 ,

81 9 9

sn

sn sn
g

Z g g Z 
  

        
  

 (39) 

     
 

2

2 2
min 2

1 2

4 1 38 8
4 1 3 3 1 3 ,

81 9 9

sn

sn sn
g

Z g g Z 
  

        
  

 (40) 

Besides the condition imposed on sng , it was shown that the initial conditions of the system also 

play an important role in the TET mechanism [10, 14, 15]. Specifically, the initial energy of the 

primary structure init

1Z  has to be greater than max

1Z  given in Eq. (39). Fig. 3a depicts the slow 

invariant manifold between 
1Z  and 

2Z  when the condition init max

1 1Z Z  is satisfied. As can be seen, 

1Z  and 
2Z  smoothly decrease from their initial conditions until 

1Z  reaches its local minimum 

min

1Z . At that moment, 
2Z  undergoes a jump, and is suddenly reduced from 2

2Z   to the smallest 

solution of 
2Z  corresponding to min

1Z . This jump phenomenon, however, is not observed for 
1Z

which continues to decrease after min

1Z  but following a different branch, i.e. the leftmost branch of 

the invariant manifold. The evolution of 
1Z  and 

2Z  against the slow time scale 
1  is shown in Fig. 

3b. It is noted that 
1Z  decays with a quasi-linear slope before the critical point min

1Z  instead of an 

exponential rate typically associated with linear systems. This clearly indicates the occurrence of 

TET. After the critical point  min 2

1 2,Z Z  , TET vanishes and 
1Z  decreases much slower compared 

to the case when TET is active. This drastically decreased rate is understood to be due to the low 

post-jump value of 2Z , which by virtue of Eq. (35) entails a low dissipation rate for 1Z .When the 

condition init max

1 1Z Z  is not valid, TET is not be robustly triggered or not triggered at all, as 

demonstrated in [14, 15].  
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Fig. 3 (a) slow invariant manifold of  
1Z  and 

2Z  when sng  is set to 0.2 and init

1Z  is set to 0.3, (b) the 

corresponding time history of 
1Z  and 

2Z  at slow time scale 

In order to meet this condition, the minimal normalised control gain 3ng  i.e. the normalised cube 

root inertance can be derived as: 

 

    

3 init init max

1 1 1

2 2
3

init

1

8
4 1 3 3 1 3

81

n

n sn sn

g E Z Z

g g g
E

 



  
      

  

 (41) 

3.2 Influence of control parameters    

Up to now, the tuning laws (38) and (41) for the two control parameters sng  and 3ng  that initiate 

TET have been derived. However, it is not yet clear what is their impact on the vibration mitigation 
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performance. In this section, two metrics introduced in [14], namely the energy dissipation ratio 

and the pumping time are discussed in order to investigate the influence of the control parameters. 

The energy dissipation ratio is referred to as the ratio between the energy dissipated during TET 

and the initial energy, whereas the pumping time is defined as the time span of TET. As discussed 

previously, the point  min 2

1 2,Z Z   plays an important role, below which the beneficial effect induced 

by TET disappears. In this context, the energy dissipation ratio can be calculated as: 

 

    
2 2

init min

1 1
TET init 3 init

1 1

4 1 3 3 1 3
8

1
81

sn sn

n

g g
Z Z

E
Z g E

  
     

   
    (42) 

When the two control parameters sng  and 3ng  are chosen according to Eqs. (38) and (41) i.e. TET 

can be initiated, 
TETE  is bounded between  0,1 . The closer 

TETE  is to unity, the more the energy 

is dissipated during TET.  

The corresponding time duration of TET can be derived by rewriting Eq. (35) as: 

 1 1 2
2 2

1 2 1

sn snZ Z Z
g Z g Z

Z 

  
    

  
 (43) 

assuming that 
1Z  is still greater than min

1Z  such that the derivative of 
1Z  against 

2Z  is continuous. 

Substituting Eq. (37) into Eq. (43), one obtains: 

 
 

2
2

2 2

2 1

2

27
3 1

16 d d

sn

sn

Z Z g

Z g
Z


  

   (44) 

Integrating on both sides, one obtains: 

  2 1

snf Z C g    (45) 

where       
2

2

2 2 2 2

27
3 1 ln

32

snf Z Z Z g Z    . 

The normalised pumping time at slow time scale can be thus derived from Eq. (45) as: 

 
   init 2*

2 2

pump sn

f Z f Z
T

g


  (46) 

Note that pumpT  is defined in this equation through the slow time scale 
1 . 

Fig. 4 (a) and (b) depict the evolution of the pumping time and the energy dissipation ratio against 

different values of sng  ranging from 0.001 to the maximally allowed value for TET, i.e., 1 3 . For 

each value of  sng , 3ng  is chosen such that the normalised initial energy init

1Z  is 1.1 times greater 

than the threshold value max

1Z  where init

1E  is set to 0.01. As shown, both metrics monotonically 

decrease with an increase of sng . This means that a large amount of energy is dissipated during 

TET when sng  is set to a relatively small value, but this comes at the cost of a longer pumping time. 

Therefore, there is a trade-off in choosing a suitable value of sng  for the considered performance 

metrics.   
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Fig. 5 (a) and (b) illustrate the same quantities but against 3ng  when sng  is set to 0.1. The range of 

3ng  is defined such that the normalised initial energy init

1Z  varies from max

11.1 Z  to max

15 Z . 

Contrary to the previous case, both metrics monotonically increase with an increase of 3ng . This 

means that more energy is dissipated for a greater value of 3ng , but again it needs more time to 

complete. Therefore, the same compromise is observed for the choice of 3ng . In the light of Fig. 5 

(a) and (b), it is recommended to set it slightly above the threshold value as the pumping time pumpT

degrades more than the energy dissipation rate TETE  benefits from an increase of 3ng . 

 

Fig. 4 (a) Pumping time and (b) energy dissipation ratio against sng  when 3ng  is chosen so that 

the initial energy init

1Z  is 1.1 times greater than max

1Z    
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Fig. 5 (a) Pumping time and (b) energy dissipation ratio against 3ng  when sng  is set to 0.1 

3.3 Numerical validation  

Numerical studies are performed in order to validate the derived semi-analytic equations and to 

examine the control effectiveness of the proposed ANES. The MATLAB built-in integration 

function ode45 is used to solve the original governing equations (10) and (11). The solutions are 

then substituted into Eqs. (31) and (32) in order to compute the energy-like variables 
1E  and 

2E , 

and eventually 
1Z  and 

2Z . The system parameters are listed in Table 1. Two cases are considered, 

i.e. 3ng  is chosen to be 1.2 and 0.8 times greater than the minimum value required for triggering 

TET.  

Table 1 parameters used for numerical simulations 

System parameters sng  3ng  init

1x    

TET activated 0.2 32.6 10  210  0.02 

TET inactivated 0.2 31.7 10  210  0.02 

Fig. 6 compares the results computed using the numerical and the analytical approach when TET 

is activated. It can be observed that 
1Z  decays with a quasi-linear slope until the critical point at 

which 
2Z  undergoes a jump. In addition, the evolution of 

1Z  is shown to be determined only by 

the slow time scale dynamics as suggested by Eq. (19), whereas 
2Z  exhibits both fast and slow 

scale dynamics. Despite some differences present after the critical point, the semi-analytical result 
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in terms of 
1Z  is found to be in good accordance with that obtained from the numerical calculations. 

In contrast, 
2Z  behaves differently between the numerical and analytical results. This is because 

the semi-analytical approach neglects the fast time scale contributions such that it fails to predict 

the actual dynamics of 
2Z . Nevertheless, the semi-analytic solution for 

2Z  gives the trend of the 

response when averaging out the fast components of the actual solutions. It should also be noted 

that 
2Z  exhibits initially some high-frequency oscillations. This is caused by the fact that the initial 

state of the system does not necessarily lie on the slow invariant manifold such that it takes some 

time to be attracted to this manifold. This is also referred to as nonlinear beating [10]. The mismatch 

after the critical point is caused by the fact that the sudden jump of 
2Z  is not well followed by the 

fast dynamics. Overall, the semi-analytical approach is shown to offer a good qualitative 

description of the system’s dynamics.  

Fig. 7 plots the results obtained when TET is  not activated. A fairly good match is observed. Both 

1Z  and 2Z  decay with an exponential slope, as linear systems do.  

The control performance in terms of the primary structure’s displacement is compared in Fig. 8 

when TET is activated or not.  It is clear that the energy is damped much more quickly when the 

ANES is tuned to activate TET.   

 

    

Fig. 6 Comparison of numerical and analytical results when TET is activated for: (a) 
1Z  and (b) 

2Z  

at the slow time scale 
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Fig. 7 Comparison of numerical and analytical results when TET is inactive for: (a) 
1Z  and (b) 

2Z  

at the slow time scale 

 

Fig. 8 Comparison of control effectiveness when TET is activated or deactivated 
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Fig. 9 depicts the variable 2x  i.e. the normalised force measured by the force sensor. It can be seen 

that more energy is pumped into the ANES when TET is activated, as evidenced by the comparison 

of the oscillation amplitude for the two cases. The corresponding driving forces i.e. 

   
33

2 2

0 0 0

d d d

t t t

sn n

a

t

F t g x t g x t t


     for the two cases are plotted in Fig. 10. Accordingly, more 

forces need to be delivered when TET is activated. Note that 1x , 2x  and aF  shown in Figs. 8-10 

are dimensionless quantities. In order to implement the proposed ANES for practical applications, 

special care should be given on the specifications of the transducer and the corresponding 

amplifiers such that the required stroke and force are satisfied.  

 

Fig. 9 Comparison of the normalised transmission force 2x  when TET is deactivated or activated 
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Fig. 10 Comparison of the normalised driving force when TET is deactivated or activated 

4. ANES tuning for MDOF systems 

For MDOF systems, another appealing feature of a mechanical NES is the capability of mitigating 

the vibrations of multiple structural modes. The underlying mechanism is referred to as resonance 

capture cascade (RCC). In this section, it is shown that an ANES can damp multiple structural 

modes through RCC and the tuning law for triggering multi-frequency TET is derived.    

The considered system is shown in Fig. 11, where a linear three-degree-of-system is taken as the 

primary structure and an ANES is placed between 2m  and 1m . The parameters of the primary 

structure are listed in Table 2. The question is how to choose the control parameters sg  and 3dg  

such that multi-frequency TET can be activated for the this system. Similar to a mechanical NES, 

the idea is to assume that ANES interacts with a single structural mode at a time. If so, the 

guidelines for triggering the occurrence of TET for a SDOF system can be directly applied. The 

values of sg  and 3dg  required for activating TET of each mode can be obtained. Then, one can 

examine whether TET can be triggered for all the structural modes of interest with one single setting 

of sg  and 3dg .  

Following upon this idea, the primary system is firstly decomposed into three SDOF systems in 

modal coordinates. The mass-normalised eigenvector matrix of the primary system and the 

resonance frequencies are: 
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0.328 0.737 0.591

0.591 0.325 0.737

0.737 0.591 0.328

 
 

  
 
  

E  (47) 

 

0.445

1.247 rad s

1.802

 
 


 
  

ω  (48) 

Table 2 parameters of the primary system 

Parameters value Parameters value Parameters value 

1m (kg) 1 2m (kg) 1 3m (kg) 1 

1k (N/m) 1 2k (N/m) 1 3k (Ns/m) 1 

1c (Ns/m) 0 2c (Ns/m) 0 3c (Ns/m) 0 

The ANES stiffness 0.057ak   is chosen such that the modal stiffness ratio between the ANES 

and the primary system for mode 1 is equal to 2%. According to Eq. (9), the normalised control 

parameter 
sng  decreases with the resonance frequency. Therefore, sg  is chosen such that 

sng  for 

mode 1 is equal to 2%. In this way, 
sng  for the other modes is smaller than 2% which automatically 

meets the condition given by (38). The initial condition of the system 
init

X  is taken as:  

    
T Tinit

1 2 3, , 0.01, 0, 0x x x X  (49) 

The initial condition in the modal coordinates can be obtained: 

 
T

init 1 init 3 3 33.3 10 7.4 10 5.9 10          Q E X  (50) 

The mode shape difference at the locations of the ANES i.e. 
ie  as in Eq. (8) are calculated by 

taking the difference between the first two rows of the eigenvector E . Grouping them in vector 

form, one obtains: 

    1 2 3 0.263 0.409 1.328
T T

e e e      e  (51) 

The actuator connection vector b  as defined in Eq. (1) for the considered system is given as: 

  

  
T

1, 1, 0 b  (52) 

where the indices l  and k  represent the first and the second DOF indices to which the actuator is attached.  
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Fig. 11 A linear MDOF system coupled with an ANES   

With the knowledge of sg , ak , intQ , e  and ω , the threshold of 3dg  for triggering each mode’s 

TET, referred to as  min

3 , 1,2,3d i
g i  , can be derived by substituting these parameters into Eqs. 

(41), (9) and (8). The results are given in Table 3. It is found that  min

3 1dg   for mode 1 is greater 

than that for the other two modes. This implies that TET can be triggered for all modes if  3dg  is 

greater than  min

3 1dg . The final value of 3dg  is thus set to be 1.2 times greater than  min

3 1dg , 

completing the determination of the ANES parameters sg , 3dg  and ak .  

The ANES performance is preliminarily assessed by using the two performance indices i.e. the 

pumping time pumpT and the energy dropping ratio 
TETE . Their values are listed in Table 3. It is seen 

that it takes around 415 seconds for pumping out the energy associated with mode 2, while only 71 

seconds are required for mode 1. This is mainly because the effective stiffness ratio and the 

damping ratio for the second mode are relatively low. During TET, the energy possessed by modes 

2 and 3 is almost completely dissipated by the ANES, while approximately 80% of the energy is 

damped out for mode 1. This is caused by the fact that the damping ratio for the first mode is 

relative high and the corresponding initial value init

1Z  is close to the threshold max

1Z . 
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Table 3 ANES parameters and performance measures 

Parameters  sn

i
g   max

1 i
Z

 

i   min

3d i
g   3n

i
g   init

1 i
Z   pump i

T   TET i
E  

mode 1 0.2 0.216 0.02 71.8 10  42.4 10  0.259 71.6s 79.6% 

mode 2 0.07 0.2 0.006 71.0 10  37.4 10  0.403 415.8s 98.3% 

mode 3 0.05 0.199 0.03 63.2 10  43.7 10  1.308 234.9s 99.7% 

ANES 0.09sg    7

3 2.1 10dg     0.057ak   N/m 

ATID 0.62sg    0.32dg    0.057ak   N/m 

In order to verify the analytical analysis, a numerical simulation is performed for the coupled 

system. Fig. 12 (a) and (b) plot the time history and the time-frequency analysis of the transmission 

force sF , respectively. As can be seen, the ANES is able to interact with each mode sequentially. 

Once a sufficient amount of energy has been dissipated, the ANES escapes from the current 

resonance capture and engages with the next mode, realising in essence a RCC. The comparison 

between Fig. 12 (a) and Table 3 highlights that the pumping time for each mode is correctly 

predicted by the analytical results. The vibration mitigation performance is evaluated by the 

response of 1m , the results of which are shown in Fig. 12 (c) and (d), respectively. Interestingly, it 

is seen that the energy associated with each mode is dissipated only when the corresponding TET 

occurs, again confirming the previous assumption. A benchmark case is considered where 3dg  is 

set to 1% of the current value such that no TETs are triggered. The resulting control performance 

in terms of the displacement of 1m  is superimposed in Fig. 12 (c). The comparison clearly 

highlights the vibration mitigation efficiency improved by the well-tuned ANES.   

Next, the control effectiveness of the ANES is also compared with that of a linear active tuned 

inerter-damper (ATID) [23] on the considered primary system. The relationship between an ATID 

and an ANES can be understood in analogy with a mechanical TMD and a mechanical NES. The 

ATID is configured such that the effective damping associated with mode 1 is maximised according 

to the tuning law in [34]. The corresponding control parameters i.e. gains of the single integrator 

sg  and the double integrator dg  are given in Table 3. The resulting control performance is shown 

in Fig. 13 which is superimposed with that of the ANES. Fig. 14 plots the time-frequency 

distribution of 1x  when the optimally configured ATID is used. As shown in Fig. 13, the ATID 

seems to outperform the ANES in the time window between 150 and 600 seconds. In fact, the 

vibrations when ANES is used during this period are mainly due to two vibration modes (mode 1 

& mode 2), as seen from the time-frequency plot in Fig. 12 (d). As ANES takes effect sequentially 

from high modes to low modes, in this time window, ANES affects only mode 2 and basically 

leaves mode 1 ‘undamped’. On the other hand, the vibrations associated with mode 1 for ATID 
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start to be attenuated from the very beginning. When the time reaches 200s, the energy with mode 

1 is already well dissipated and the vibrations are basically dominated by mode 2, which is not 

effectively damped by the ATID. The results show clearly that ANES can effectively damp the 

energy of all the modes of the system, while ATID can only be tuned to one mode. This broadband 

efficiency of ANES makes it also much more robust to the presence of uncertainties in the primary 

system as demonstrated by the comparison between a mechanical NES and a mechanical TMD in 

[10].     
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Fig. 12 (a) time history of the transmission force sF ; (b) time-frequency distribution of sF ; (c) time 

history of 1x ; (d) time-frequency distribution of 1x  

  

 

 

Fig. 13 Control effectiveness comparison between ANES and ATID  
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Fig. 14 Time-frequency distribution of 1x  when the optimally configured ATID is used 

 

5. Conclusion 

This paper discussed an active nonlinear energy sink concept realised by a pair of collocated 

reactive actuator and force sensor. The equivalent mechanical representation i.e. serially-connected 

cube root inerter, linear damper and linear spring has been derived to better understand the physics 

behind the coupled electromechanical system. It is found that an ANES and a NES behave similarly 

in terms of their slow-scale dynamics and vibration mitigation effectiveness. Closed-form tuning 

laws for regulating the control parameters of the ANES have been derived for both SDOF and 

MDOF systems. The well-known threshold in terms of the host structure vibration’s energy for 

triggering TET is converted into constraints on the control parameters which allows a 

straightforward implementation in practice. The influence of the control parameters on the 

vibration mitigation performance has also been investigated. More energy is dissipated during TET 

if the control parameter sg  is relatively small, but it takes more time to do so. An opposite trend 

applies for the other control parameter 3dg . Numerical simulations have been performed to verify 

the analytical developments. From a practical viewpoint, the proposed ANES is preferable over a 

mechanical NES as it not only features real-time tuning of the control parameters, but also allows 

for a flexible implementation of various forms of the nonlinear exponent. In addition, one can 
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envision to develop an analogue electronic control system for the collocated actuator-force sensor 

pair such that the resulting ANES would be compact enough for smart structure applications.            
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Appendix A 

In this appendix, it is shown that the systems sketched in Fig. 1 (a) and (b) are dynamically 

equivalent, or, in other words, the networks shown in Fig. A1 (a) and (b) are equivalent. 

Fig. A1 (b) depicts a pure mechanical system which consists of a cube root inerter, a dashpot and 

a spring connected in series. A cube root inerter impedes the relative acceleration across its 

terminals with a force proportional to the cube root of its relative acceleration. Under the excitation 

force denoted by F , the governing equations of this system can be written as: 

 3
1 2aF m x x    (53) 

  2 3aF d x x    (54) 

  3 4aF k x x    (55) 

where , 1,2,3,4ix i   denotes the node displacement of each mechanical component.   
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Fig. A1 (a) the sketch of the active system and (b) its mechanical representative 
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Expressing the relative motion in terms of the transmission force F , Eqs. (53)-(55) can be 

rewritten as: 

 

3

1 2

0 0

t t

a

F
dtdt x x

m

 
   

 
   (56) 

 
2 3

0

t

a

F
dt x x

d
    (57) 

 3 4

a

F
x x

k
    (58) 

Summing up Eqs. (56)-(58) and multiplying both sides with 
ak , yields: 

  
3

1 43

a a

a

a a

k F k F
F k x x

m d
    
 

 (59) 

According to the control law, the governing equations of the system shown in Fig. A1(a) can be 

expressed as: 

 
3

3

0 0 0

t t t

s d aF g Fdt g F dtdt k x       (60) 

where 1 4x x x   represents the relative displacement across the ANES. 

Comparing Eq. (59) with Eq. (60) and one can find the equivalence between systems shown in Fig. 

A1(a) and (b). The feedback gains and their corresponding mechanical components are thus related 

by the following equation:  

 3
3 3;a a s a a dd k g m k g   (61) 
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