[en] Class D β-lactamases with carbapenemase activity are emerging as carbapenem-resistance determinants in Gram-negative bacterial pathogens, mostly Acinetobacter baumannii and Klebsiella pneumoniae. Carbapenemase activity is an unusual feature among class D β-lactamases, and the structural elements responsible for this activity remain unclear. Based on structural and molecular dynamics data, we previously hypothesized a potential role of the residues located in the short-loop connecting strands β5 and β6 (the β5-β6 loop) in conferring the carbapenemase activity of the OXA-48 enzyme. In this work, the narrow-spectrum OXA-10 class D β-lactamase, which is unable to hydrolyze carbapenems, was used as a model to investigate the possibility of evolving carbapenemase activity by replacement of the β5-β6 loop with those present in three different lineages of class D carbapenemases (OXA-23, OXA-24, and OXA-48). Biological assays and kinetic measurements showed that all three OXA-10-derived hybrids acquired significant carbapenemase activity. Structural analysis of the OXA-10loop24 and OXA-10loop48 hybrids revealed no significant changes in the molecular fold of the enzyme, except for the orientation of the substituted β5-β6 loops, which was reminiscent of that found in their parental enzymes. These results demonstrate the crucial role of the β5-β6 loop in the carbapenemase activity of class D β-lactamases, and provide previously unexplored insights into the mechanism by which these enzymes can evolve carbapenemase activity.
De Luca, F.; Dipartimento di Biotecnologie, Laboratorio di Fisiologia e Biotecnologia dei Microrganismi, Università di Siena, I-53100 Siena, Italy
Benvenuti, M.; Dipartimento di Chimica, Università di Siena, I-53100 Siena, Italy
Carboni, F.; Dipartimento di Chimica, Università di Siena, I-53100 Siena, Italy
Pozzi, C.; Dipartimento di Chimica, Università di Siena, I-53100 Siena, Italy
Rossolini, G. M.; Dipartimento di Biotecnologie, Laboratorio di Fisiologia e Biotecnologia dei Microrganismi, Università di Siena, I-53100 Siena, Italy, Unità Operativa Complessa di Microbiologia e Virologia, Azienda Ospedaliera-Universitaria Senese, I-53100 Siena, Italy
Mangani, S.; Dipartimento di Chimica, Università di Siena, I-53100 Siena, Italy, Centro di Ricerca di Risonanze Magnetiche, Università di Firenze, I-50019 Sesto Fiorentino, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Language :
English
Title :
Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase OXA-10 by rational protein design
Publication date :
2011
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences, Washington, United States - District of Columbia
Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 365:579-587. (Pubitemid 40247914)
Rice LB (2009) The clinical consequences of antimicrobial resistance. Curr Opin Microbiol 12:476-481.
Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(Suppl 1):i29-i36.
Queenan AM, Bush K (2007) Carbapenemases: The versatile β-lactamases. Clin Microbiol Rev 20:440-458.
Bilavsky E, Schwaber MJ, Carmeli Y (2010) How to stem the tide of carbapenemaseproducing enterobacteriaceae?: Proactive versus reactive strategies. Curr Opin Infect Dis 23:327-331.
Santillana E, Beceiro A, Bou G, Romero A (2007) Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc Natl Acad Sci USA 104:5354-5359. (Pubitemid 47175684)
Docquier JD, et al. (2009) Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among class D carbapenemases. Chem Biol 16:540-547.
Danel F, Hall LM, Gur D, Livermore DM (1998) OXA-16, a further extended-spectrum variant of OXA-10 β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 42:3117-3122. (Pubitemid 28553728)
Sun T, Nukaga M, Mayama K, Braswell EH, Knox JR (2003) Comparison of β-lactamases of classes A and D: 1.5-A crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci 12:82-91. (Pubitemid 36020137)
Paetzel M, et al. (2000) Crystal structure of the class D β-lactamase OXA-10. Nat Struct Biol 7:918-925.
Maveyraud L, et al. (2000) Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8: 1289-1298. (Pubitemid 32149755)
Pernot L, et al. (2001) Crystal structures of the class D β-lactamase OXA-13 in the native form and in complex with meropenem. J Mol Biol 310:859-874. (Pubitemid 32695700)
Docquier JD, et al. (2010) Crystal structure of the narrow-spectrum OXA-46 class D β-lactamase: Relationship between active-site lysine carbamylation and inhibition by polycarboxylates. Antimicrob Agents Chemother 54:2167-2174.
Matsumura N, Minami S, Watanabe Y, Iyobe S, Mitsuhashi S (1999) Role of permeability in the activities of β-lactams against gram-negative bacteria which produce a group 3 β-lactamase. Antimicrob Agents Chemother 43:2084-2086. (Pubitemid 29395217)
Orencia MC, Yoon JS, Ness JE, Stemmer WP, Stevens RC (2001) Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat Struct Biol 8:238-242. (Pubitemid 32180050)
Tawfik DS (2006) Biochemistry. Loop grafting and the origins of enzyme species. Science 311:475-476.
Docquier JD, et al. (2003) On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J Antimicrob Chemother 51:257-266.
Borgianni L, et al. (2010) Mutational analysis of VIM-2 reveals an essential determinant for metallo-β-lactamase stability and folding. Antimicrob Agents Chemother 54:3197-3204.
Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115.
Clinical Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for Bacteria that grow aerobically, approved standard. 7th edition. CLSI document M7-A7. (Clinical Laboratory Standards Institute, Wayne, PA) p 26.
Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207-234.
Lovato L, et al. (2008) Transketolase and 2′,3′-cyclic- nucleotide 3′-phosphodiesterase type I isoforms are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol Cell Proteomics 7:2337-2349.
Vagin A, Teplyakov A (1997) MOLREP: An automated program for molecular replacement. J Appl Cryst 30:1022-1025. (Pubitemid 127485985)
Vagin AA, et al. (2004) REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60:2184-2195. (Pubitemid 41742770)
Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132. (Pubitemid 41742764)
Cohen SX, et al. (2008) ARP/wARP and molecular replacement: The next generation. Acta Crystallogr D Biol Crystallogr 64:49-60.
Laskowski RA, Macarthur MW, Moss DS, Thornton JE (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 26:283-291.
Potterton E, McNicholas S, Krissinel E, Cowtan K, Noble M (2002) The CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 58:1955-1957. (Pubitemid 35337294)