[en] Objective. To identify the outer membrane protein absent in the resistant isolates and to determine both the causes of its absence in the membrane and the presence of other mechanisms of carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. Methods. Twenty isolates from an outbreak of P. aeruginosa previously characterized as metallo-beta-lactamase IMP-13 producers were studied. All the isolates exhibited equal expression of the IMP-13 enzyme, but only five of them were carbapenemresistant. It was found that the five resistant isolates lacked a outer membrane protein. The oprD and ampC genes were sequenced; the outer membrane proteins were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry; the OprD and AmpC expressions, as well as the Mex efflux system, were assessed by real-time polymerase chain reaction; and finally, the contribution of reduced OprD to carbapenem resistance was determined. Results. The absent outer membrane protein in group R was identified as OprD-TS; however, no variations in its expression were observed. The oprD gene presented mutations in the five resistant isolates. The production of AmpC PDC-5-type enzyme and the MexAB-OprM efflux system was the same in both carbapenem-sensitive and -resistant isolates. The contribution of the combined presence of IMP-13 and reduced OprD to increased resistance was examined. Conclusions. Different mechanisms contribute to carbapenem resistance in IMP- 13-producing isolates. The possibility that these IMP-13-producing isolates could go undetected poses a latent risk when selecting mutants with added resistance mechanisms in order to enhance carbapenem resistance.
Disciplines :
Microbiology
Author, co-author :
Santella, G.; Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
Pollini, S.; Departamento de Biología Molecular, Universidad de Siena, Siena, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Almuzara, M.; Hospital Eva Perón, Buenos Aires, Argentina
Gutkind, G.; Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
Rossolini, G. M.; Departamento de Biología Molecular, Universidad de Siena, Siena, Italy
Radice, M.; Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
Language :
Spanish
Title :
Resistencia a carbapenemes en aislamientos de Pseudomonas aeruginosa: Un ejemplo de interacción entre distintos mecanismos
Alternative titles :
[en] Carbapenem resistance in Pseudomonas aeruginosa isolates: An example of interaction between different mechanisms
Publication date :
2011
Journal title :
Revista Panamericana de Salud Publica/Pan American Journal of Public Health
Rossolini GM, Luzzaro F, Migliavacca R, Mugnaioli C, Pini B, De Luca F, et al. First countrywide survey of acquired metallobeta-lactamases in Gram-negative pathogens in Italy. Antimicrob Agents Chemother. 2008;52(11):4023-9.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582-610.
Santella G, Cuirolo A, Almuzara M, Palombarani S, Sly G, Radice M, et al. Full resistance and decreased susceptibility to carbapenems in IMP-13-producing Pseudomonas aeruginosa isolates from an outbreak. Antimicrob Agents Chemother. 2010;54(3):1381-2.
Santella G, Pollini S, Docquier JD, Mereuta AI, Gutkind G, Rossolini GM, et al. Intercontinental dissemination of IMP-13-producing Pseudomonas aeruginosa belonging in sequence type 621. J Clin Microbiol. 2010;48(11):4342-3.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, 19087 USA, 2011. 2011.
Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R, et al. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J. 2003;369(Pt 2):301-9. (Pubitemid 36174199)
Dumas JL, van Delden C, Perron K, Kohler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett. 2006;254(2):217-25.
Yoneyama H, Yamano Y, Nakae T. Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: construction of mutants with deletions in the multiple porin genes. Biochem Biophys Res Commun. 1995;213(1):88-95.
Borgianni Luisa FJM, Rossolini GM, Docquier JD, editor. Mutational analysis of the VIM-2 active site: role of position 64 and 87 in enzyme activity and stability. The 46th Conference on Antimicrobial agents and Chemotherapy; 2006; San Francisco, California.
Edalucci E, Spinelli R, Dolzani L, Riccio ML, Dubois V, Tonin EA, et al. Acquisition of different carbapenem resistance mechanisms by an epidemic clonal lineage of Pseudomonas aeruginosa. Clin Microbiol Infect. 2008;14(1): 88-90. (Pubitemid 350226577)
Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(5):1766-71.