Biochemistry, biophysics & molecular biology Life sciences: Multidisciplinary, general & others Microbiology
Author, co-author :
Santucci, M.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
Spyrakis, F.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy, Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy
Quotadamo, A.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
Farina, D.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
Tondi, D.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
De Luca, F.; Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, Siena, 53100, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Prieto, A. I.; Biomedicine Institute of Sevilla (IBIS), CSIC, Avda. Manuel Siurot, sn., Sevilla, Spain
Ibacache, C.; National Center of Biotechnology, CSIC, Calle Darwin, 3, Madrid, 28049, Spain
Blázquez, J.; Biomedicine Institute of Sevilla (IBIS), CSIC, Avda. Manuel Siurot, sn., Sevilla, Spain, National Center of Biotechnology, CSIC, Calle Darwin, 3, Madrid, 28049, Spain
Venturelli, A.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy, TYDOCK PHARMA S.r.l., Strada Gherbella 294/b, Modena, 41126, Italy
Cruciani, G.; Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia, 06123, Italy
Costi, M. P.; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, Modena, 41125, Italy
Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases
Publication date :
2017
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group
Volume :
7
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
European Regional Development Fund, FEDERRD12/0015/0012Ministerio de EconomÃa y Competitividad, MINECOEuropean Regional Development Fund, FEDERGM63815Instituto de Salud Carlos III, ISCIII
Bush, K. Proliferation and significance of clinically relevant beta-lactamases. Ann. N. Y. Acad. Sci. 1277, 84-90 (2013).
Farina, D. et al. The inhibition of extended spectrum beta-lactamases: hits and leads. Curr. Med. Chem. 21, 1405-1434 (2014).
Tondi, D. et al. Decoding the structural basis for carbapenem hydrolysis by class A beta-lactamases: fishing for a pharmacophore. Curr Drug Targets 17, 983-1005 (2016).
Naas, T. & Iorga, B. http://www.bldb.eu, 2015).
Ambler, R. P. et al. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 276(Pt 1), 269-270 (1991).
Bush, K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int. J. Antimicrob. Agent. 46, 483-493 (2015).
Livermore, D. M. Has the era of untreatable infections arrived? J. Antimicrob. Chemother. 64(Suppl 1), i29-36 (2009).
Theuretzbacher, U. Accelerating resistance, inadequate antibacterial drug pipelines and international responses. Int. J. Antimicrob. Agents 39, 295-299 (2012).
Munoz-Price, L. S. Carbapenem-resistant Enterobacteriaceae, long-term acute care hospitals, and our distortions of reality. Infect Control Hosp Epidemiol 34, 835-837 (2013).
Hawkey, P. M. & Jones, A. M. The changing epidemiology of resistance. J Antimicrob Chemother 64(Suppl 1), i3-10 (2009).
Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10, 597-602 (2010).
Rodriguez-Martinez, J. M., Poirel, L. & Nordmann, P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53, 4783-4788 (2009).
Poirel, L. et al. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother 56, 1087-1089 (2012).
Peleg, A. Y., Seifert, H. & Paterson, D. L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538-582 (2008).
Tam, V. H. et al. Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 54, 1160-1164 (2010).
FDA, New & Release. FDA approves new antibacterial drug, 2017).
Brem, J. et al. Structural basis of metallo-beta-lactamase, serine-beta-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 7, 12406 (2016).
Tondi, D. et al. Structure-based design and in-parallel synthesis of inhibitors of AmpC beta-lactamase. Chem. Biol. 8, 593-611 (2001).
Eidam, O. et al. Fragment-guided design of subnanomolar beta-lactamase inhibitors active in vivo. Proc. Natl. Acad. Sci. USA 109, 17448-17453 (2012).
Tondi, D., Calo, S., Shoichet, B. K. & Costi, M. P. Structural study of phenyl boronic acid derivatives as AmpC beta-lactamase inhibitors. Bioorg. Med. Chem. Lett. 20, 3416-3419 (2010).
Tondi, D. et al. Targeting class A and C serine beta-lactamases with a broad-spectrum boronic acid derivative. J. Med. Chem. 57, 5449-5458 (2014).
Venturelli, A. et al. Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J. Med. Chem. 50, 5644-5654 (2007).
Rojas, L. J. et al. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A beta-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob Agents Chemother 60, 1751-1759 (2016).
Bhattacharya, S. Early diagnosis of resistant pathogens. Virulence 4, 172-184 (2012).
Diekema, D. & Pfaller, M. Rapid Detection of Antibiotic-Resistant Organism Carriage for Infection Prevention. Clin Infect Dis 56, 1614-1620 (2013).
Gupta, G., Tak, V. & Mathur, P. Detection of AmpC beta Lactamases in Gram-negative Bacteria. J Lab Physicians 6, 1-6 (2014).
Naas, T., Cuzon, G., Truong, H., Bernabeu, S. & Nordmann, P. Evaluation of a DNA microarray, the check-points ESBL/KPC array, for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and KPC carbapenemases. Antimicrob Agents Chemother 54, 3086-3092 (2010).
Gabay, E. L., Sutter, V. L. & Finegold, S. M. Rapid beta-lactamase testing in bacteroides. J Antimicrob Chemother 8, 413-416 (1981).
Hasan, T., Sallum, U. W. & Verma, S. Photoactivatable antimicrobial agents and therapeutic and diagnostic methods of using same (2009).
Overdevest, I. T., Willemsen, I., Elberts, S., Verhulst, C. & Kluytmans, J. A. Laboratory detection of extended-spectrum-betalactamase-producing Enterobacteriaceae: evaluation of two screening agar plates and two confirmation techniques. J Clin Microbiol 49, 519-522 (2011).
Hrabak, J., Chudackova, E. & Papagiannitsis, C. C. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20, 839-853 (2014).
Pitout, J. D., Le, P. G., Moore, K. L., Church, D. L. & Gregson, D. B. Detection of AmpC beta-lactamases in Escherichia coli, Klebsiella spp., Salmonella spp. and Proteus mirabilis in a regional clinical microbiology laboratory. Clin Microbiol Infect 16, 165-170 (2010).
Brooks, W. L. & Sumerlin, B. S. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chem Rev 116, 1375-1397 (2016).
Das, B. C. et al. Boron chemicals in diagnosis and therapeutics. Future Med Chem 5, 653-676 (2013).
Baroni, M., Cruciani, G., Sciabola, S., Perruccio, F. & Mason, J. S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J. Chem. Inf. Model. 47, 279-294 (2007).
Goodford, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849-857 (1985).
http://www.moldiscovery.com.
Quotadamo, A. et al. An Improved Synthesis of CENTA, a Chromogenic Substrate for β-Lactamases. Synkett 27, 2447-2450 (2016).
Naas, T., Dortet, L. & Iorga, B. Structural and functional aspects of class A carbapenemases. Curr. Drug Targets, in press, (2015).
Borgianni, L. et al. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob Agents Chemother 54, 3197-3204 (2010).
Lahiri, S. D. et al. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC beta-lactamases. Antimicrob. Agents Chemother. 57, 2496-2505 (2013).
Liang, Z. et al. Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One 6, e23606 (2011).
Ourghanlian, C., Soroka, D. & Arthur, M. Inhibition by Avibactam and Clavulanate of the beta-Lactamases KPC-2 and CTX-M-15 Harboring the Substitution N132G in the Conserved SDN Motif. Antimicrob Agents Chemother 61, (2017).
Quero, G. et al. Long period fiber grating working in reflection mode as valuable biosensing platform for the detection of drug resistant bacteria. Sensors and Actuators B: Chemical 230, 510-520 (2016).
Santillana, E., Beceiro, A., Bou, G. & Romero, A. Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proc Natl Acad Sci USA 104, 5354-5359 (2007).
Powers, R. A. et al. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase. Protein. Sci. 8, 2330-2337 (1999).
Mobley, D. L. & Dill, K. A. Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". Structure 17, 489-498 (2009).
Chen, Y., Shoichet, B. & Bonnet, R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J. Am. Chem. Soc. 127, 5423-5434 (2005).
Levitt, M. & Perutz, M. F. Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 201, 751-754 (1988).
Ke, W., Bethel, C. R., Thomson, J. M., Bonomo, R. A. & van den Akker, F. Crystal structure of KPC-2: insights into carbapenemase activity in class A beta-lactamases. Biochemistry 46, 5732-5740 (2007).
Institute, C. A. L. S. Performance standards for antimicrobial susceptibility testing. 20th Informational Supplement M100-S209, (2010).
Kumalo, H. M., Bhakat, S. & Soliman, M. E. Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules 20, 1984-2000 (2015).
Lei, M., Zhao, X., Wang, Z. & Zhu, Y. Pharmacophore modeling, docking studies, and synthesis of novel dipeptide proteasome inhibitors containing boron atoms. J. Chem. Inf. Model. 49, 2092-2100 (2009).
Li, X. et al. A Statistical Survey on the Binding Constants of Covalently Bound Protein-Ligand Complexes. Molecular Informatics 29, 87-96 (2010).
Ghiglione, B. et al. Structural and Kinetic Insights into the "Ceftazidimase" Behavior of the Extended-Spectrum beta-Lactamase CTX-M-96. Biochemistry 54, 5072-5082 (2015).
Drawz, S. M., Papp-Wallace, K. M. & Bonomo, R. A. New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother. 58, 1835-1846 (2014).
Krishnan, N. P., Nguyen, N. Q., Papp-Wallace, K. M., Bonomo, R. A. & van den Akker, F. Inhibition of Klebsiella beta-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study. PLoS One 10, e0136813 (2015).
Cartwright, S. J. & Waley, S. G. Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem. J. 221, 505-512 (1984).
Usher, K. C., Blaszczak, L. C., Weston, G. S., Shoichet, B. K. & Remington, S. J. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry 37, 16082-16092 (1998).
Docquier, J. D. et al. CAU-1, a subclass B3 metallo-beta-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob Agents Chemother 46, 1823-1830 (2002).
Burlingham, B. & Widlanski, T. An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot. J Chem Educ 80, 214 (2003).
Brem, J. et al. Structural Basis of Metallo-beta-Lactamase Inhibition by Captopril Stereoisomers. Antimicrob Agents Chemother 60, 142-150 (2015).
Carosati, E., Sciabola, S. & Cruciani, G. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. J. Med. Chem. 47, 5114-5125 (2004).
Fortuna, C. G. et al. New linezolid-like 1,2,4-oxadiazoles active against Gram-positive multiresistant pathogens. Eur. J. Med. Chem. 65, 533-545 (2013).
Muratore, G. et al. Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proc. Natl. Acad. Sci. USA 109, 6247-6252 (2012).
Muratore, G. et al. Human cytomegalovirus inhibitor AL18 also possesses activity against influenza A and B viruses. Antimicrob. Agents Chemother. 56, 6009-6013 (2012).
Spyrakis, F. et al. A pipeline to enhance ligand virtual screening: integrating Molecular Dynamics and FLAP. J. Chem. Inf. Model. (2015).
Spyrakis, F. et al. Targeting cystalysin, a virulence factor of treponema denticola-supported periodontitis. Chem Med Chem 9, 1501-1511 (2014).
Spyrakis, F. et al. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 8, e77558 (2013).
Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; 25th informational supplement., CLSI M100-S125 (2015).