Antibiotic resistance; Inhibitor; Metallo β-lactamase; Subclass B3; X-ray crystallography; Antibiotics; Boric acid; Crystal atomic structure; Enzymes; Health risks; Molecules; X ray analysis; X rays; Zinc compounds; Bacterial resistance; Lactamases; Microbial infections; Risk to human health; Small molecule inhibitor; X ray crystallography
Di Pisa, F.; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
Pozzi, C.; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
Benvenuti, M.; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
De Luca, F.; Department of Medical Biotechnology, University of Siena53100, Italy
Mangani, S.; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy, Magnetic Resonance Center CERM, University of Florence, Sesto Fiorentino (Fi), 50019, Italy
Language :
English
Title :
Boric acid and acetate anion binding to subclass B3 metallo-β-lactamase BJP-1 provides clues for mechanism of action and inhibitor design
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aitha, M., Marts, A.R., Bergstrom, A., Møller, A.J., Moritz, L., Turner, L., Nix, J.C., Bonomo, R.A., Page, R.C., Tierney, D.L., et al. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 53 (2014), 7321–7331.
Babic, M., Hujer, A.M., Bonomo, R.A., What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother. 9 (2006), 142–156.
Bellais, S., Léotard, S., Poirel, L., Naas, T., Nordmann, P., Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol. Lett. 171 (1999), 127–132.
Benvenuti, M., Mangani, S., Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2 (2007), 1633–1651.
Brem, J., Cain, R., Cahill, S., McDonough, M.A., Clifton, I.J., Jiménez-Castellanos, J.-C., Avison, M.B., Spencer, J., Fishwick, C.W.G., Schofield, C.J., Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun., 7, 2016, 12406.
Bush, K., The ABCD's of β-lactamase nomenclature. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 19 (2013), 549–559.
Bush, K., Jacoby, G.A., Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54 (2010), 969–976.
Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50 (1994), 760–763.
Cowtan, K., Emsley, P., Wilson, K.S., From crystal to structure with CCP4. Acta Crystallogr. D Biol. Crystallogr. 67 (2011), 233–234.
Crowder, M.W., Spencer, J., Vila, A.J., Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39 (2006), 721–728.
Docquier, J.-D., Pantanella, F., Giuliani, F., Thaller, M.C., Amicosante, G., Galleni, M., Frère, J.-M., Bush, K., Rossolini, G.M., CAU-1, a subclass B3 metallo-beta-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob. Agents Chemother. 46 (2002), 1823–1830.
Docquier, J.-D., Benvenuti, M., Calderone, V., Stoczko, M., Menciassi, N., Rossolini, G.M., Mangani, S., High-resolution crystal structure of the subclass B3 metallo-β-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides. Antimicrob. Agents Chemother. 54 (2010), 4343–4351.
Emsley, P., Cowtan, K., Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60 (2004), 2126–2132.
Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66 (2010), 486–501.
Evans, P., Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62 (2006), 72–82.
Faridoon, Ul Islam, N., An update on the status of potent inhibitors of metallo-β-lactamases. Sci. Pharm. 81 (2013), 309–327.
Fast, W., Sutton, L.D., Metallo-β-lactamase: inhibitors and reporter substrates. Biochim. Biophys. Acta BBA Proteins Proteomics 1834 (2013), 1648–1659.
Furuyama, T., Nonomura, H., Ishii, Y., Hanson, N.D., Shimizu-Ibuka, A., Structural and mutagenic analysis of metallo-β-lactamase IMP-18. Antimicrob. Agents Chemother. 60 (2016), 5521–5526.
Galleni, M., Lamotte-Brasseur, J., Rossolini, G.M., Spencer, J., Dideberg, O., Frère, J.-M., Group, T.M.-β-L.W., Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45 (2001), 660–663.
Garau, G., García-Sáez, I., Bebrone, C., Anne, C., Mercuri, P., Galleni, M., Frère, J.-M., Dideberg, O., Update of the standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 48 (2004), 2347–2349.
Garcı́a-Sáez, I., Mercuri, P.S., Papamicael, C., Kahn, R., Frère, J.M., Galleni, M., Rossolini, G.M., Dideberg, O., Three-dimensional structure of FEZ-1, a monomeric subclass B3 Metallo-β-lactamase from Fluoribacter gormanii, in native form and in complex with d-Captopril. J. Mol. Biol. 325 (2003), 651–660.
Garrity, J.D., Pauff, J.M., Crowder, M.W., Probing the dynamics of a mobile loop above the active site of L1, a metallo-β-lactamase from Stenotrophomonas maltophilia, via site-directed mutagenesis and stopped-flow fluorescence spectroscopy. J. Biol. Chem. 279 (2004), 39663–39670.
Hecker, S.J., Reddy, K.R., Totrov, M., Hirst, G.C., Lomovskaya, O., Griffith, D.C., King, P., Tsivkovski, R., Sun, D., Sabet, M., et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J. Med. Chem. 58 (2015), 3682–3692.
Hinchliffe, P., González, M.M., Mojica, M.F., González, J.M., Castillo, V., Saiz, C., Kosmopoulou, M., Tooke, C.L., Llarrull, L.I., Mahler, G., et al. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E3745–3754.
Huntley, J.J.A., Fast, W., Benkovic, S.J., Wright, P.E., Dyson, H.J., Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-β-lactamase. Protein Sci. 12 (2003), 1368–1375.
King, D.T., Worrall, L.J., Gruninger, R., Strynadka, N.C.J., New Delhi Metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc. 134 (2012), 11362–11365.
Kupper, M.B., Herzog, K., Bennink, S., Schlömer, P., Bogaerts, P., Glupczynski, Y., Fischer, R., Bebrone, C., Hoffmann, K.M., The three-dimensional structure of VIM-31 – a metallo-β-lactamase from Enterobacter cloacae in its native and oxidized form. FEBS J. 282 (2015), 2352–2360.
Langer, G., Cohen, S.X., Lamzin, V.S., Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3 (2008), 1171–1179.
Laskowski, R.A., MacArthur, M.W., Thornton, J.M., Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8 (1998), 631–639.
Leiros, H.-K.S., Borra, P.S., Brandsdal, B.O., Edvardsen, K.S.W., Spencer, J., Walsh, T.R., Samuelsen, Ø., Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Antimicrob. Agents Chemother. 56 (2012), 4341–4353.
Leslie, A.G.W., The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62 (2006), 48–57.
Livermore, D.M., Has the era of untreatable infections arrived?. J. Antimicrob. Chemother. 64 (2009), i29–i36.
Meini, M.-R., Llarrull, L.I., Vila, A.J., Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett. 589 (2015), 3419–3432.
Mercuri, P.S., García-Sáez, I., Vriendt, K.D., Thamm, I., Devreese, B., Beeumen, J.V., Dideberg, O., Rossolini, G.M., Frère, J.-M., Galleni, M., Probing the specificity of the subclass B3 FEZ-1 metallo-β-lactamase by site-directed mutagenesis. J. Biol. Chem. 279 (2004), 33630–33638.
Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B., Van Beeumen, J., Galleni, M., Frère, J.-M., Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem. Biol. 10 (2003), 319–329.
Morán-Barrio, J., Lisa, M.-N., Larrieux, N., Drusin, S.I., Viale, A.M., Moreno, D.M., Buschiazzo, A., Vila, A.J., Crystal structure of the metallo-β-lactamase GOB in the periplasmic dizinc form reveals an unusual metal site. Antimicrob. Agents Chemother. 60 (2016), 6013–6022.
Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67 (2011), 355–367.
Nauton, L., Kahn, R., Garau, G., Hernandez, J.F., Dideberg, O., Structural insights into the design of inhibitors for the L1 metallo-β-lactamase from Stenotrophomonas maltophilia. J. Mol. Biol. 375 (2008), 257–269.
Osano, E., Arakawa, Y., Wacharotayankun, R., Ohta, M., Horii, T., Ito, H., Yoshimura, F., Kato, N., Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother. 38 (1994), 71–78.
Page, M.I., Badarau, A., The mechanisms of catalysis by metallo beta-lactamases. Bioinorg. Chem. Appl., 2008 576297.
Palzkill, T., Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci. 1277 (2013), 91–104.
Papp-Wallace, K.M., Bonomo, R.A., New β-lactamase inhibitors in the Clinic. Infect. Dis. Clin. North Am. 30 (2016), 441–464.
Pettinati, I., Brem, J., Lee, S.Y., McHugh, P.J., Schofield, C.J., The chemical biology of human metallo-β-lactamase fold proteins. Trends Biochem. Sci. 41 (2016), 338–355.
Potterton, L., McNicholas, S., Krissinel, E., Gruber, J., Cowtan, K., Emsley, P., Murshudov, G.N., Cohen, S., Perrakis, A., Noble, M., Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 60 (2004), 2288–2294.
Rasmussen, B.A., Gluzman, Y., Tally, F.P., Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 34 (1990), 1590–1592.
Saavedra, M.J., Peixe, L., Sousa, J.C., Henriques, I., Alves, A., Correia, A., Sfh-I, a subclass B2 metallo-beta-lactamase from a Serratia fonticola environmental isolate. Antimicrob. Agents Chemother. 47 (2003), 2330–2333.
Salimraj, R., Zhang, L., Hinchliffe, P., Wellington, E.M.H., Brem, J., Schofield, C.J., Gaze, W.H., Spencer, J., Structural and biochemical characterization of Rm3, a subclass B3 metallo-β-lactamase identified from a functional metagenomic study. Antimicrob. Agents Chemother. 60 (2016), 5828–5840.
Sgrignani, J., De Luca, F., Torosyan, H., Docquier, J.-D., Duan, D., Novati, B., Prati, F., Colombo, G., Grazioso, G., Structure-based approach for identification of novel phenylboronic acids as serine-β-lactamase inhibitors. J. Comput. Aided Mol. Des. 30 (2016), 851–861.
Spencer, J., Read, J., Sessions, R.B., Howell, S., Blackburn, G.M., Gamblin, S.J., Antibiotic recognition by binuclear metallo-β-lactamases revealed by X-ray crystallography. J. Am. Chem. Soc. 127 (2005), 14439–14444.
Stoczko, M., Frère, J.-M., Rossolini, G.M., Docquier, J.-D., Postgenomic scan of metallo-β-lactamase homologues in rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob. Agents Chemother. 50 (2006), 1973–1981.
Tondi, D., Venturelli, A., Bonnet, R., Pozzi, C., Shoichet, B.K., Costi, M.P., Targeting Class A and C Serine β-Lactamases with a Broad-Spectrum Boronic Acid Derivative. J. Med. Chem. 57 (2014), 5449–5458.
Ullah, J.H., Walsh, T.R., Taylor, I.A., Emery, D.C., Verma, C.S., Gamblin, S.J., Spencer, J., The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution1. J. Mol. Biol. 284 (1998), 125–136.
Vagin, A., Teplyakov, A., Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66 (2010), 22–25.
Wachino, J., Yoshida, H., Yamane, K., Suzuki, S., Matsui, M., Yamagishi, T., Tsutsui, A., Konda, T., Shibayama, K., Arakawa, Y., SMB-1, a novel subclass B3 metallo-β-lactamase, associated with ISCR1 and a class 1 integron, from a carbapenem-resistant Serratia marcescens clinical isolate. Antimicrob. Agents Chemother. 55 (2011), 5143–5149.
Wachino, J., Yamaguchi, Y., Mori, S., Kurosaki, H., Arakawa, Y., Shibayama, K., Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Antimicrob. Agents Chemother. 57 (2013), 101–109.
Wachino, J.-I., Yamaguchi, Y., Mori, S., Jin, W., Kimura, K., Kurosaki, H., Arakawa, Y., Structural insights into recognition of hydrolyzed carbapenems and inhibitors by subclass B3 metallo-β-lactamase SMB-1. Antimicrob. Agents Chemother. 60 (2016), 4274–4282.
Wang, Z., Fast, W., Valentine, A.M., Benkovic, S.J., Metallo-beta-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3 (1999), 614–622.
Yamaguchi, Y., Matsueda, S., Matsunaga, K., Takashio, N., Toma-Fukai, S., Yamagata, Y., Shibata, N., Wachino, J., Shibayama, K., Arakawa, Y., et al. Crystal Structure of IMP-2 Metallo-β-lactamase from Acinetobacter spp. Biol. Pharm. Bull. 38 (2015), 96–101.
Zhang, H., Hao, Q., Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 25 (2011), 2574–2582.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.