VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- And metallo-β-lactamases, restores activity of cefepime in enterobacterales and Pseudomonas aeruginosa
Hamrick, J. C.; Docquier, Jean-Denis; Uehara, T.et al.
2020 • In Antimicrobial Agents and Chemotherapy, 64 (3)
VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- And metallo-β-lactamases, restores activity of cefepime in enterobacterales and Pseudomonas aeruginosa
Publication date :
2020
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology
Volume :
64
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
NIAID - National Institute of Allergy and Infectious Diseases Wellcome Trust
Bush K. 2018. Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in Gram-negative bacteria. ACS Infect Dis 4:84–87. https://doi.org/10.1021/acsinfecdis.7b00243.
Garber KA. 2015. β-Lactamase inhibitor revival provides new hope for old antibiotics. Nat Rev Drug Discov 14:445–447. https://doi.org/10.1038/nrd4666.
Chaudhary AS. 2016. A review of global initiatives to fight antibiotic resistance and recent antibiotics discovery. Acta Pharm Sin B 6:552–556. https://doi.org/10.1016/j.apsb.2016.06.004.
Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. 2015. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis 2:ofv050. https://doi.org/10.1093/ofid/ofv050.
CDC. 2019. Antibiotic resistance threats in the United States 2019. CDC, U.S. Department of Health and Human Services, Atlanta, GA. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.
Gupta V, Ye G, Olesky M, Lawrence K, Murray J, Yu K. 2019. National prevalence estimates for resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States. Int J Infect Dis 85:203–211. https://doi.org/10.1016/j.ijid.2019.06.017.
Mehlhorn AJ, Brown DA. 2007. Safety concerns with fluoroquinolones. Ann Pharmacother 41:1859–1866. https://doi.org/10.1345/aph.1K347.
Yarrington ME, Anderson DJ, Dodds Ashley E, Jones T, Davis A, Johnston M, Lokhnygina Y, Sexton DJ, Moehring RW. 2019. Impact of FDA black box warning on fluoroquinolone and alternative antibiotic use in southeastern US hospitals. Infect Control Hosp Epidemiol 40:1297–1300. https://doi.org/10.1017/ice.2019.247.
Peters S. 2019. Facing the fluoroquinolone facts: safety concerns continue to emerge. S D Med 72:136–138.
Phe K, Lee Y, McDaneld PM, Prasad N, Yin T, Figueroa DA, Musick WL, Cottreau JM, Hu M, Tam VH. 2014. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob Agents Chemother 58:2740–2746. https://doi.org/10.1128/AAC.02476-13.
Van Duin D, Kaye KS, Neuner EA, Bonomo RA. 2013. Carbapenemresistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis 75:115–120. https://doi.org/10.1016/j.diagmicrobio.2012.11.009.
Bush K, Bradford PA. 2019. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol 17:295–306. https://doi.org/10.1038/s41579-019-0159-8.
Bush K, Jacoby GA. 2010. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976. https://doi.org/10.1128/AAC.01009-09.
Bush K, Bush K. 2018. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 62:e01076-18. https://doi.org/10.1128/AAC.01076-18.
Potter RF, D’Souza AW, Dantas G. 2016. The rapid spread of carbapenem resistant Enterobacteriaceae. Drug Resist Updat 29:30–46. https://doi.org/10.1016/j.drup.2016.09.002.
Bush K. 2015. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 46:483–493. https://doi.org/10.1016/j.ijantimicag.2015.08.011.
Contreras DA, Fitzwater SP, Nanayakkara DD, Schaenman J, Aldrovandi GM, Garner OB, Yang S. 16 September 2019. Co-infections of two strains of NDM-1 and OXA-232 co-producing Klebsiella pneumoniae in a kidney transplant patient. Antimicrob Agents Chemother https://doi.org/10.1128/AAC.00948-19.
van Duin D, Doi Y. 2017. The global epidemiology of carbapenemaseproducing Enterobacteriaceae. Virulence 8:460–469. https://doi.org/10.1080/21505594.2016.1222343.
Shirley M. 2018. Ceftazidime-avibactam: a review in the treatment of serious Gram-negative bacterial infections. Drugs 78:675–692. https://doi.org/10.1007/s40265-018-0902-x.
Papp-Wallace KM, Bonomo RA. 2016. New β-lactamase inhibitors in the clinic. Infect Dis Clin North Am 30:441–464. https://doi.org/10.1016/j.idc.2016.02.007.
Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, King P, Tsivkovski R, Sun D, Sabet M, Tarazi Z, Clifton MC, Atkins K, Raymond A, Potts KT, Abendroth J, Boyer SH, Loutit JS, Morgan EE, Durso S, Dudley MN. 2015. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem 58:3682–3692. https://doi.org/10.1021/acs.jmedchem.5b00127.
Ju LC, Cheng Z, Fast W, Bonomo RA, Crowder MW. 2018. The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharmacol Sci 39:635–647. https://doi.org/10.1016/j.tips.2018.03.007.
Khan AU, Maryam L, Zarrilli R. 2017. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 17:101. https://doi.org/10.1186/s12866-017-1012-8.
Linciano P, Cendron L, Gianquinto E, Spyrakis F, Tondi D. 2019. Ten years with New Delhi metallo-β-lactamase-1 (NDM-1): from structural insights to inhibitor design. ACS Infect Dis 5:9–34. https://doi.org/10.1021/acsinfecdis.8b00247.
Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyen MH, Clancy CJ. 2017. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 61:e02097-16. https://doi.org/10.1128/AAC.02097-16.
Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, Nguyen MH. 2017. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob Agents Chemother 61:e02534-16. https://doi.org/10.1128/AAC.02534-16.
Fraile-Ribot PA, Cabot G, Mulet X, Periañez L, Martín-Pena ML, Juan C, Pérez JL, Oliver A. 2018. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother 73: 658–663. https://doi.org/10.1093/jac/dkx424.
Berrazeg M, Jeannot K, Ntsogo Enguéné VY, Broutin I, Loeffert S, Fournier D, Plésiat P. 2015. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother 59:6248 – 6255. https://doi.org/10.1128/AAC.00825-15.
Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J. 2017. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob Agents Chemother 61:e02260-16. https://doi.org/10.1128/AAC.02260-16.
Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos JC, Avison MB, Spencer J, Fishwick CWG, Schofield CJ. 2016. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 7:12406–12413. https://doi.org/10.1038/ncomms12406.
Burns CJ, Daigle D, Liu B, McGarry D, Pevear DC, Trout REL. 12 June 2014. Beta-lactamase inhibitors. Patent WO2014089365 A1.
Liu B, Trout REL, Chu G-H, McGarry D, Jackson RW, Hamrick J, Daigle D, Cusick S, Pozzi C, De Luca F, Benvenuti M, Mangani S, Docquier J-D, Weiss WJ, Pevear DC, Xerri L, Burns CJ. 16 December 2019. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-βlactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem https://doi.org/10.1021/acs.jmedchem.9b01518.
Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Durand-Reville TF, Lahiri S, Thresher J, Livchak S, Gao N, Palmer T, Walkup GK, Fisher SL. 2013. Kinetics of avibactam inhibition against class A, C and D β-lactamases. J Biol Chem 288:27960–27971. https://doi.org/10.1074/jbc.M113.485979.
Garcia-Saez I, Docquier JD, Rossolini GM, Dideberg O. 2008. The three-dimensional structure of VIM-2, a Zn-beta-lactamase from Pseudomonas aeruginosa in its reduced and oxidised form. J Mol Biol 375:604–611. https://doi.org/10.1016/j.jmb.2007.11.012.
Escolà-Vergé L, Larrosa N, Los-Arcos I, Viñado B, González-López JJ, Pigrau C, Almirante B, Len O. 2019. Infections by OXA-48-like-producing Klebsiella pneumoniae non-co-producing extended-spectrum betalactamases: can they be successfully treated with cephalosporins? J Glob Antimicrob Resist 19:28–31. https://doi.org/10.1016/j.jgar.2019.02.016.
Bakthavatchalam YD, Anandan S, Veeraraghavan B. 2016. Laboratory detection and clinical implications of oxacillinase-48 like carbapenemases: the hidden threat. J Glob Infect Dis 8:41–50. https://doi.org/10.4103/0974-777X.176149.
Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing, 30th ed. CLSI document M100-Ed30. Clinical and Laboratory Standards Institute, Wayne, PA.
Castanheira M, Duncan LR, Rhomberg PR, Sader HS. 2017. Enhanced activity of cefepime-tazobactam (WCK 4282) against KPC-producing Enterobacteriaceae when tested in media supplemented with human serum or sodium chloride. Diagn Microbiol Infect Dis 89:305–309. https://doi.org/10.1016/j.diagmicrobio.2017.08.011.
Rodriguez-Martinez JM, Poirel L, Nordmann P. 2009. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:4783–4788. https://doi.org/10.1128/AAC.00574-09.
Eljaaly K, Enani MA, Al-Tawfiq JA. 2018. Impact of carbapenems versus non-carbapenem treatment on the rates of superinfection: a meta-analysis of randomized controlled trials. J Infect Chemother 24:915–920. https://doi.org/10.1016/j.jiac.2018.08.004.
Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D, Hill R, Pike R, Mustafa N, Livermore DM, Woodford N. 2017. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 72:1340–1349. https://doi.org/10.1093/jac/dkx012.
Edelstein MV, Skleenova EN, Shevchenko OV, D’souza JW, Tapalski DV, Azizov IS, Sukhorukova MV, Pavlukov RA, Kozlov RS, Toleman MA, Walsh TR. 2013. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 13:867–876. https://doi.org/10.1016/S1473-3099(13)70168-3.
Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, Sahm DF, Bradford PA. 2016. Multiyear, multicenter survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:1067–1078. https://doi.org/10.1128/AAC.02379-15.
Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, Li Y, Liao K, Chen S. 2017. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 19:98–106. https://doi.org/10.1016/j.ebiom.2017.04.032.
Zhang X, Wang W, Yu H, Wang M, Zhang H, Lv J, Tang YM, Kreiswirth BN, Du H, Chen L. 2019. New Dehli metallo-β-lactamase 5-producing Klebsiella pneumoniae sequence type 258, southwest China, 2017. Emerg Infect Dis 25:1209–1213. https://doi.org/10.3201/eid2506.181939.
Livermore DM, Mushtaq S. 2013. Activity of biapenem (RPX-2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 68: 1825–1831. https://doi.org/10.1093/jac/dkt118.
Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI. 2017. Beta-Lactamase DataBase (BLDB)—structure and function. J Enzyme Inhib Med Chem 32:917–919. https://doi.org/10.1080/14756366.2017.1344235.
Golemi D, Maveyraud L, Vakulenko S, Samama JP, Mobashery S. 2001. Critical involvement of a carbamylated lysine in catalytic function of class D β-lactamases. Proc Natl Acad Sci U S A 98:14280–14285. https://doi.org/10.1073/pnas.241442898.
Borgianni L, Vandenameele J, Matagne A, Bini L, Bonomo RA, Frere JM, Rossolini GM, Docquier JD. 2010. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob Agents Chemother 54:3197–3204. https://doi.org/10.1128/AAC.01336-09.
Laraki N, Franceschini N, Rossolini GM, Santucci P, Meunier C, de Pauw E, Amicosante G, Frere JM, Galleni M. 1999. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother 43:902–906. https://doi.org/10.1128/AAC.43.4.902.
Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 11th ed. CLSI document M07-Ed11. Clinical and Laboratory Standards Institute, Wayne, PA.
Hackel M, Pevear D, Sahm D. 2018. In vitro activity of cefepime in combination with VNRX-5133 against Gram-negative UTI isolates, abstr P-606. Abstr ASM Microbe, Atlanta, GA. American Society for Microbiology, Washington, DC.
Abdelraouf K, Almarzoky Abuhussain S, Nicolau D. 2018. Efficacy of the human-simulated regimen of cefepime/VNRX-5133 combination against serine β-lactamase-producing Gram-negative bacteria in the neutropenic murine thigh infection model, abstr P-1405. Abstr ID Week, San Francisco, CA.
Clinical and Laboratory Standards Institute. 1999. Methods for determining bactericidal activity of antimicrobial agents, approved guidelines. CLSI document M26-A. Clinical and Laboratory Standards Institute, Wayne, PA.
Lahiri SD, Mangani S, Durand-Reville T, Benvenuti M, De Luca F, Sanyal G, Docquier J-D. 2013. Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases. Antimicrob Agents Chemother 57:2496–2505. https://doi.org/10.1128/AAC.02247-12.
McNicholas S, Potterton E, Wilson KS, Noble M. 2011. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67:386–394. https://doi.org/10.1107/S0907444911007281.
Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM, Metallo-β-lactamases Working Group. 2001. Standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother 45: 660 – 663. https://doi.org/10.1128/AAC.45.3.660-663.2001.
Koeth L, Cusick S, Xerri L. 2018. Development of CLSI MIC and disk diffusion quality control ranges for cefepime/VNRX-5133, poster 226. Abstr ASM Microbe. American Society for Microbiology, Washington, DC.