scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Marvin Antonio, S.-U. Chemico-Biological Activity and Medicinal Chemistry of Boron-Containing Compounds. Curr. Med. Chem. 2019, 26, 5003–5004, doi:10.2174/092986732626190930142703.
Ban, H.S.; Nakamura, H. Boron-Based Drug Design. Chem. Rec. 2015, 15, 616–635, doi:10.1002/tcr.201402100.
Smoum, R.; Rubinstein, A.; Dembitsky, V.M.; Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012, 112, 4156–4220, doi:10.1021/cr608202m.
Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019, 179, 791–804, doi:10.1016/j.ejmech.2019.06.092.
Zhou, J.; Stapleton, P.; Haider, S.; Healy, J. Boronic acid inhibitors of the class A beta-lactamase KPC-2. Bioorg. Med. Chem. 2018, 26, 2921–2927, doi:10.1016/j.bmc.2018.04.055.
Rojas, L.J.; Taracila, M.A.; Papp-Wallace, K.M.; Bethel, C.R.; Caselli, E.; Romagnoli, C.; Winkler, M.L.; Spellberg, B.; Prati, F.; Bonomo, R.A. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A beta-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob. Agents Chemother. 2016, 60, 1751–1759, doi:10.1128/aac.02641-15.
Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine-and Metallo-beta-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, doi:10.1128/aac.01963-19.
Lopez, A.; Clark, T.B.; Parra, A.; Tortosa, M. Copper-Catalyzed Enantioselective Synthesis of beta-Boron beta-Amino Esters. Org. Lett. 2017, 19, 6272–6275, doi:10.1021/acs.orglett.7b02784.
Andrés, P.; Ballano, G.; Calaza, M.I.; Cativiela, C. Synthesis of α-aminoboronic acids. Chem. Soc. Rev. 2016, 45, 2291–2307, doi:10.1039/C5CS00886G.
Diaz, D.B.; Scully, C.C.; Liew, S.K.; Adachi, S.; Trinchera, P.; St Denis, J.D.; Yudin, A.K. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem. Int. Ed. Engl. 2016, 55, 12659–12663, doi:10.1002/anie.201605754.
He, Z.; Yudin, A.K. Amphoteric alpha-boryl aldehydes. J. Am. Chem. Soc. 2011, 133, 13770–13773, doi:10.1021/ja205910d.
Adachi, S.; Cognetta, A.B., 3rd; Niphakis, M.J.; He, Z.; Zajdlik, A.; St Denis, J.D.; Scully, C.C.; Cravatt, B.F.; Yudin, A.K. Facile synthesis of borofragments and their evaluation in activity-based protein profiling. Chem. Commun. 2015, 51, 3608–3611, doi:10.1039/c4cc09107h.
Šterman, A.; Sosič, I.; Gobec, S.; Časar, Z. Synthesis of aminoboronic acid derivatives: An update on recent advances. Org. Chem. Front. 2019, 6, 2991–2998, doi:10.1039/C9QO00626E.
Kaldas, S.J.; Rogova, T.; Nenajdenko, V.G.; Yudin, A.K. Modular Synthesis of beta-Amino Boronate Peptidomimetics. J. Org. Chem. 2018, 83, 7296–7302, doi:10.1021/acs.joc.8b00325.
Herrera, R.P.; Marqués-López, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis, 1st ed.; Wiley: Hoboken, NJ, (USA), 2015.
Rainoldi, G.; Begnini, F.; de Munnik, M.; Lo Presti, L.; Vande Velde, C.M.L.; Orru, R.; Lesma, G.; Ruijter, E.; Silvani, A. Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Comb. Sci. 2018, 20, 98–105, doi:10.1021/acscombsci.7b00179.
Lesma, G.; Meneghetti, F.; Sacchetti, A.; Stucchi, M.; Silvani, A. Asymmetric Ugi 3CR on isatin-derived ketimine: Synthesis of chiral 3, 3-disubstituted 3-aminooxindole derivatives. Beilstein J. Org. Chem. 2014, 10, 1383–1389, doi:10.3762/bjoc.10.141.
Stucchi, M.; Gmeiner, P.; Huebner, H.; Rainoldi, G.; Sacchetti, A.; Silvani, A.; Lesma, G. Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library. ACS Med. Chem. Lett. 2015, 6, 882–887, doi:10.1021/acsmedchemlett.5b00131.
Stucchi, M.; Cairati, S.; Cetin-Atalay, R.; Christodoulou, M.S.; Grazioso, G.; Pescitelli, G.; Silvani, A.; Yildirim, D.C.; Lesma, G. Application of the Ugi reaction with multiple amino acid-derived components: Synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics. Org. Biomol. Chem. 2015, 13, 4993–5005, doi:10.1039/C5OB00218D.
Lesma, G.; Cecchi, R.; Crippa, S.; Giovanelli, P.; Meneghetti, F.; Musolino, M.; Sacchetti, A.; Silvani, A. Ugi 4-CR/Pictet-Spengler reaction as a short route to tryptophan-derived peptidomimetics. Org. Biomol. Chem. 2012, 10, 9004–9012, doi:10.1039/c2ob26301g.
Silvani, A.; Lesma, G.; Crippa, S.; Vece, V. Multicomponent access to novel dihydroimidazo[1′,5′:1,2]pyrido[3,4-b]indol-2-ium salts and indoles by means of Ugi/Bischler– Napieralski/heterocyclization two step strategy. Tetrahedron 2014, 70, 3994–4001, doi:10.1016/j.tet.2014.04.081.
Lesma, G.; Bassanini, I.; Bortolozzi, R.; Colletto, C.; Bai, R.; Hamel, E.; Meneghetti, F.; Rainoldi, G.; Stucchi, M.; Sacchetti, A., et al. Complementary isonitrile-based multicomponent reactions for the synthesis of diversified cytotoxic hemiasterlin analogues. Org. Biomol. Chem. 2015, 13, 11633–11644, doi:10.1039/c5ob01882j.
Lawrence, K.; Flower, S.E.; Kociok-Kohn, G.; Frost, C.G.; James, T.D. A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. Anal. Meth. 2012, 4, 2215–2217, doi:10.1039/C2AY25346A.
Janvier, P.; Sun, X.; Bienayme, H.; Zhu, J. Ammonium chloride-promoted four-component synthesis of pyrrolo[3,4-b]pyridin-5-one. J. Am. Chem. Soc. 2002, 124, 2560–2567, doi:10.1021/ja017563a.
CCDC 1995920 contains the supplementary crystallographic data for this paper. The Cambridge Crystallographic Data Centre. Available online: www.ccdc.cam.ac.uk/structures.
Knapp, D.M.; Gillis, E.P.; Burke, M.D. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 6961–6963, doi:10.1021/ja901416p.
CCDC 1995919 contains the supplementary crystallographic data for this paper. The Cambridge Crystallographic Data Centre. Available online 14.01.2020: www.ccdc.cam.ac.uk/structures.
Schrödinger Release 2019-4; Maestro, Schrödinger, LLC: New York, NY, USA, 2020.
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, A.; Sacerdoti, D. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proc. ACM/IEEE Conf. Supercomput. 2006, 43, doi:10.1145/1188455.1188544.
Bruker, S. ADABS; Bruker AXS Inc.: Madison, WI, USA, 2008.
Borgianni, L.; Vandenameele, J.; Matagne, A.; Bini, L.; Bonomo, R.A.; Frere, J.M.; Rossolini, G.M.; Docquier, J.D. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob. Agents Chemother. 2010, 54, 3197–3204, doi:10.1128/aac.01336-09.
Weinstein, M.P. MD M07-Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobicall, 10th ed.; Clinical and Laboratory Standards Institute (CLSI): USA, 2015.
Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Toth, M.; Kumarasiri, M.; Chang, M.; Mobashery, S.; Vakulenko, S.B. Structural basis for carbapenemase activity of the OXA-23 beta-lactamase from Acinetobacter baumannii. Chem. Biol. 2013, 20, 1107–1115, doi:10.1016/j.chembiol.2013.07.015.
Wang, X.; Minasov, G.; Shoichet, B.K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 2002, 320, 85–95, doi:10.1016/s0022-2836(02)00400-x.
Sgrignani, J.; Grazioso, G.; De Amici, M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-beta-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016, 55, 5191–5200, doi:10.1021/acs.biochem.6b00461.
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935, doi:10.1063/1.445869.
Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L., et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874, doi:10.1021/acs.jctc.8b01026.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33– 38, doi:10.1016/0263-7855(96)00018-5.
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196, doi:10.1021/jm051256o.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.