Marvin Antonio, S.-U. Chemico-Biological Activity and Medicinal Chemistry of Boron-Containing Compounds. Curr. Med. Chem. 2019, 26, 5003–5004, doi:10.2174/092986732626190930142703.
Ban, H.S.; Nakamura, H. Boron-Based Drug Design. Chem. Rec. 2015, 15, 616–635, doi:10.1002/tcr.201402100.
Smoum, R.; Rubinstein, A.; Dembitsky, V.M.; Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 2012, 112, 4156–4220, doi:10.1021/cr608202m.
Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019, 179, 791–804, doi:10.1016/j.ejmech.2019.06.092.
Zhou, J.; Stapleton, P.; Haider, S.; Healy, J. Boronic acid inhibitors of the class A beta-lactamase KPC-2. Bioorg. Med. Chem. 2018, 26, 2921–2927, doi:10.1016/j.bmc.2018.04.055.
Rojas, L.J.; Taracila, M.A.; Papp-Wallace, K.M.; Bethel, C.R.; Caselli, E.; Romagnoli, C.; Winkler, M.L.; Spellberg, B.; Prati, F.; Bonomo, R.A. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A beta-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob. Agents Chemother. 2016, 60, 1751–1759, doi:10.1128/aac.02641-15.
Hamrick, J.C.; Docquier, J.D.; Uehara, T.; Myers, C.L.; Six, D.A.; Chatwin, C.L.; John, K.J.; Vernacchio, S.F.; Cusick, S.M.; Trout, R.E.L.; et al. VNRX-5133 (Taniborbactam), a Broad-Spectrum Inhibitor of Serine-and Metallo-beta-Lactamases, Restores Activity of Cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, doi:10.1128/aac.01963-19.
Lopez, A.; Clark, T.B.; Parra, A.; Tortosa, M. Copper-Catalyzed Enantioselective Synthesis of beta-Boron beta-Amino Esters. Org. Lett. 2017, 19, 6272–6275, doi:10.1021/acs.orglett.7b02784.
Andrés, P.; Ballano, G.; Calaza, M.I.; Cativiela, C. Synthesis of α-aminoboronic acids. Chem. Soc. Rev. 2016, 45, 2291–2307, doi:10.1039/C5CS00886G.
Diaz, D.B.; Scully, C.C.; Liew, S.K.; Adachi, S.; Trinchera, P.; St Denis, J.D.; Yudin, A.K. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem. Int. Ed. Engl. 2016, 55, 12659–12663, doi:10.1002/anie.201605754.
He, Z.; Yudin, A.K. Amphoteric alpha-boryl aldehydes. J. Am. Chem. Soc. 2011, 133, 13770–13773, doi:10.1021/ja205910d.
Adachi, S.; Cognetta, A.B., 3rd; Niphakis, M.J.; He, Z.; Zajdlik, A.; St Denis, J.D.; Scully, C.C.; Cravatt, B.F.; Yudin, A.K. Facile synthesis of borofragments and their evaluation in activity-based protein profiling. Chem. Commun. 2015, 51, 3608–3611, doi:10.1039/c4cc09107h.
Šterman, A.; Sosič, I.; Gobec, S.; Časar, Z. Synthesis of aminoboronic acid derivatives: An update on recent advances. Org. Chem. Front. 2019, 6, 2991–2998, doi:10.1039/C9QO00626E.
Kaldas, S.J.; Rogova, T.; Nenajdenko, V.G.; Yudin, A.K. Modular Synthesis of beta-Amino Boronate Peptidomimetics. J. Org. Chem. 2018, 83, 7296–7302, doi:10.1021/acs.joc.8b00325.
Herrera, R.P.; Marqués-López, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis, 1st ed.; Wiley: Hoboken, NJ, (USA), 2015.
Rainoldi, G.; Begnini, F.; de Munnik, M.; Lo Presti, L.; Vande Velde, C.M.L.; Orru, R.; Lesma, G.; Ruijter, E.; Silvani, A. Sequential Multicomponent Strategy for the Diastereoselective Synthesis of Densely Functionalized Spirooxindole-Fused Thiazolidines. ACS Comb. Sci. 2018, 20, 98–105, doi:10.1021/acscombsci.7b00179.
Lesma, G.; Meneghetti, F.; Sacchetti, A.; Stucchi, M.; Silvani, A. Asymmetric Ugi 3CR on isatin-derived ketimine: Synthesis of chiral 3, 3-disubstituted 3-aminooxindole derivatives. Beilstein J. Org. Chem. 2014, 10, 1383–1389, doi:10.3762/bjoc.10.141.
Stucchi, M.; Gmeiner, P.; Huebner, H.; Rainoldi, G.; Sacchetti, A.; Silvani, A.; Lesma, G. Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library. ACS Med. Chem. Lett. 2015, 6, 882–887, doi:10.1021/acsmedchemlett.5b00131.
Stucchi, M.; Cairati, S.; Cetin-Atalay, R.; Christodoulou, M.S.; Grazioso, G.; Pescitelli, G.; Silvani, A.; Yildirim, D.C.; Lesma, G. Application of the Ugi reaction with multiple amino acid-derived components: Synthesis and conformational evaluation of piperazine-based minimalist peptidomimetics. Org. Biomol. Chem. 2015, 13, 4993–5005, doi:10.1039/C5OB00218D.
Lesma, G.; Cecchi, R.; Crippa, S.; Giovanelli, P.; Meneghetti, F.; Musolino, M.; Sacchetti, A.; Silvani, A. Ugi 4-CR/Pictet-Spengler reaction as a short route to tryptophan-derived peptidomimetics. Org. Biomol. Chem. 2012, 10, 9004–9012, doi:10.1039/c2ob26301g.
Silvani, A.; Lesma, G.; Crippa, S.; Vece, V. Multicomponent access to novel dihydroimidazo[1′,5′:1,2]pyrido[3,4-b]indol-2-ium salts and indoles by means of Ugi/Bischler– Napieralski/heterocyclization two step strategy. Tetrahedron 2014, 70, 3994–4001, doi:10.1016/j.tet.2014.04.081.
Lesma, G.; Bassanini, I.; Bortolozzi, R.; Colletto, C.; Bai, R.; Hamel, E.; Meneghetti, F.; Rainoldi, G.; Stucchi, M.; Sacchetti, A., et al. Complementary isonitrile-based multicomponent reactions for the synthesis of diversified cytotoxic hemiasterlin analogues. Org. Biomol. Chem. 2015, 13, 11633–11644, doi:10.1039/c5ob01882j.
Lawrence, K.; Flower, S.E.; Kociok-Kohn, G.; Frost, C.G.; James, T.D. A simple and effective colorimetric technique for the detection of boronic acids and their derivatives. Anal. Meth. 2012, 4, 2215–2217, doi:10.1039/C2AY25346A.
Janvier, P.; Sun, X.; Bienayme, H.; Zhu, J. Ammonium chloride-promoted four-component synthesis of pyrrolo[3,4-b]pyridin-5-one. J. Am. Chem. Soc. 2002, 124, 2560–2567, doi:10.1021/ja017563a.
CCDC 1995920 contains the supplementary crystallographic data for this paper. The Cambridge Crystallographic Data Centre. Available online: www.ccdc.cam.ac.uk/structures.
Knapp, D.M.; Gillis, E.P.; Burke, M.D. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from Air Stable MIDA Boronates. J. Am. Chem. Soc. 2009, 131, 6961–6963, doi:10.1021/ja901416p.
CCDC 1995919 contains the supplementary crystallographic data for this paper. The Cambridge Crystallographic Data Centre. Available online 14.01.2020: www.ccdc.cam.ac.uk/structures.
Schrödinger Release 2019-4; Maestro, Schrödinger, LLC: New York, NY, USA, 2020.
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, A.; Sacerdoti, D. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proc. ACM/IEEE Conf. Supercomput. 2006, 43, doi:10.1145/1188455.1188544.
Bruker, S. ADABS; Bruker AXS Inc.: Madison, WI, USA, 2008.
Borgianni, L.; Vandenameele, J.; Matagne, A.; Bini, L.; Bonomo, R.A.; Frere, J.M.; Rossolini, G.M.; Docquier, J.D. Mutational analysis of VIM-2 reveals an essential determinant for metallo-beta-lactamase stability and folding. Antimicrob. Agents Chemother. 2010, 54, 3197–3204, doi:10.1128/aac.01336-09.
Weinstein, M.P. MD M07-Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobicall, 10th ed.; Clinical and Laboratory Standards Institute (CLSI): USA, 2015.
Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Toth, M.; Kumarasiri, M.; Chang, M.; Mobashery, S.; Vakulenko, S.B. Structural basis for carbapenemase activity of the OXA-23 beta-lactamase from Acinetobacter baumannii. Chem. Biol. 2013, 20, 1107–1115, doi:10.1016/j.chembiol.2013.07.015.
Wang, X.; Minasov, G.; Shoichet, B.K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 2002, 320, 85–95, doi:10.1016/s0022-2836(02)00400-x.
Sgrignani, J.; Grazioso, G.; De Amici, M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-beta-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016, 55, 5191–5200, doi:10.1021/acs.biochem.6b00461.
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935, doi:10.1063/1.445869.
Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L., et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874, doi:10.1021/acs.jctc.8b01026.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33– 38, doi:10.1016/0263-7855(96)00018-5.
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196, doi:10.1021/jm051256o.