Liposome; drug delivery systems; nanoparticles; supercritical fluids; dense gas methods; PGSS; quality by design
Abstract :
[en] Liposomes were produced by an innovative method using supercritical carbon dioxide as a dispersing agent. A quality by design strategy was used to find optimal production conditions with specific parameters (lipid concentration, dispersion volume, agitation rate, temperature and pressure) allowing the production of liposomes with predicted physicochemical characteristics (particles size and PdI). Two conditions were determined with specific production parameters. It was shown that these two conditions allowed the production of liposomes of different compositions and that most of the liposome formulations had size and dispersity in accordance with the prediction values. The condition involving the higher lipid concentration showed a higher variability in terms of size and dispersity. However, this variability remained acceptable. This innovative supercritical method allowed the production of liposomes with physicochemical characteristics similar to those obtained by the conventional thin film hydration method. This new supercritical carbon dioxide method easily scalable in GMP conditions is a one-step production method contrarily to conventional methods which generally need an additional step as extrusion to homogenize the size of liposomes.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Penoy, Noémie ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Grignard, Bruno ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de rech. sur les macromolécules (CERM)
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Piel, Géraldine ; Université de Liège - ULiège > Département de pharmacie > Développement de nanomédicaments
Language :
English
Title :
A supercritical fluid technology for liposome production and comparison with the film hydration method
Alternative titles :
[fr] Une technologie utilisant les fluides supercritiques pour la production de liposomes et comparaison avec la méthode d'hydratation par film
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett, 8, 2013, 102, 10.1186/1556-276X-8-102.
Tikshdeep, C., Sonia, A., Bharat, P., Abhishek, C., Liposome drug delivery: A review. Int J Pharm Chem Sci 1 (2012), 1103–1113.
Wagner, A., Platzgummer, M., Kreismayr, G., Quendler, H., Stiegler, G., Ferko, B., et al. GMP production of liposomes – A new industral approach. J Liposome Res 16 (2006), 311–319, 10.1080/08982100600851086.
Crommelin, D.J.A., van Hoogevest, P., Storm, G., The role of liposomes in clinical nanomedicine development. What now? Now what?. J Control Release, 2020;318:256–63., 10.1016/j.jconrel.2019.12.023.
Harashima, H., Sakata, K., Funato, K., Kiwada, H., Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res An Off J Am Assoc Pharm Sci 11 (1994), 402–406, 10.1023/A:1018965121222.
Karn, P.R., Cho, W., Hwang, S.J., Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine 8 (2013), 1529–1548, 10.2217/nnm.13.131.
Samad, A., Sultana, Y., Aqil, M., Liposomal drug delivery systems: An update review. Curr Drug Deliv 4 (2007), 297–305, 10.2174/156720107782151269.
Bridson, R.H., Santos, R.C.D., Al-Duri, B., McAllister, S.M., Robertson, J., Alpar, H.O., The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques. J Pharm Pharmacol 58 (2006), 775–785, 10.1211/jpp.58.6.0008.
Meure, L.A., Foster, N.R., Dehghani, F., Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 9 (2008), 798–809, 10.1208/s12249-008-9097-x.
Wagner, A., Vorauer-Uhl, K., Liposome technology for industrial purposes. J Drug Deliv 2011 (2011), 1–9, 10.1155/2011/591325.
Shah, V.M., Nguyen, D.X., Patel, P., Cote, B., Al-Fatease, A., Pham, Y., et al. Liposomes produced by microfluidics and extrusion: A comparison for scale-up purposes. Nanomed Nanotechnol 18 (2019), 146–156, 10.1016/j.nano.2019.02.019.
Parhi, R., Suresh, P., Supercritical fluid technology: A review. J Adv Pharm Sci Technol 1 (2013), 13–36 https://doi.org/10.14302/issn.2328-0182.japst-12-145.
Andonova, V., Chandra, Sekhar G., Supercritical fluid technology: A promising approach for preparation of nano-scale drug delivery systems. J Appl Sci Eng Methodol 2 (2016), 239–242.
William, B., Noémie, P., Brigitte, E., Géraldine, P., Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem Eng J, 383, 2020, 123106, 10.1016/j.cej.2019.123106.
Kankala, R.K., Zhang, Y.S., Bin, Wang S, Lee, C.H., Chen, A.Z., Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv Healthc Mater, 2017;6., 10.1002/adhm.201700433.
Castor TP. United States Patent US005554382A Methods and apparatus for making liposomes 1996;II:5–9.
Girotra, P., Singh, S.K., Nagpal, K., Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18 (2013), 22–38, 10.3109/10837450.2012.726998.
Lesoin, L., Crampon, C., Boutin, O., Badens, E., Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids 57 (2011), 162–174, 10.1016/j.supflu.2011.01.006.
Lesoin, L., Crampon, C., Boutin, O., Badens, E., Development of a continuous dense gas process for the production of liposomes. J Supercrit Fluids 60 (2011), 51–62, 10.1016/j.supflu.2011.04.018.
Castor TP. Method and apparatus for making liposomes containing hydrophobic drugs – WO 96/15774 1996.
Zhao, L., Temelli, F., Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. J Supercrit Fluids 100 (2015), 110–120, 10.1016/j.supflu.2015.02.022.
Türeli, N.G., Türeli, A.E., Upscaling and GMP production of pharmaceutical drug delivery systems. Drug Deliv Trends 3 (2020), 215–229, 10.1016/b978-0-12-817870-6.00011-0.
Bellefroid, C., Lechanteur, A., Evrard, B., Mottet, D., Debacq-Chainiaux, F., Piel, G., In vitro skin penetration enhancement techniques: A combined approach of ethosomes and microneedles. Int J Pharm, 572, 2019, 118793, 10.1016/j.ijpharm.2019.118793.
Instruments M. Dynamic Light Scattering, common terms defined 2011:1–6.
Lechanteur, A., Furst, T., Evrard, B., Delvenne, P., Hubert, P., Piel, G., Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int J Pharm 483 (2015), 268–277, 10.1016/j.ijpharm.2015.02.041.
Ducat, E., Deprez, J., Gillet, A., Noël, A., Evrard, B., Peulen, O., et al. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: Benefits over classical vesicles. Int J Pharm 420 (2011), 319–332, 10.1016/j.ijpharm.2011.08.034.
Edwards, K., Johnsson, M., Karlsson, G., Silvander, M., Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J 73 (1997), 258–266, 10.1016/S0006-3495 (97)78066-4.
Shaker, S., Gardouh, A., Ghorab, M., Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci 12 (2017), 346–352, 10.4103/1735-5362.213979.
Zhao, L., Temelli, F., Preparation of liposomes using supercritical carbon dioxide via depressurization of the supercritical phase. J Food Eng 158 (2015), 104–112, 10.1016/j.jfoodeng.2015.03.004.
Ding, W.-X., Qi, X.R., Li, P., Maitani, Y., Nagai, T., Cholesteryl hemisuccinate as a membrane stabilizer in dipalmitoylphosphatidylcholine liposomes containing saikosaponin-d. Int J Pharm 300 (2005), 38–47, 10.1016/j.ijpharm.2005.05.005.
Kaddah, S., Khreich, N., Kaddah, F., Charcosset, C., Greige-Gerges, H., Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem Toxicol 113 (2018), 40–48, 10.1016/j.fct.2018.01.017.
Hamedinasab, H., Rezayan, A.H., Mellat, M., Mashreghi, M., Jaafari, M.R., Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol 156 (2019), 1455–1463, 10.1016/j.ijbiomac.2019.11.190.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.