Ren, G.; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Nutritional composition and antioxidant activity of twenty mung bean cultivars in China
Publication date :
2016
Journal title :
Crop Journal
ISSN :
2095-5421
eISSN :
2214-5141
Publisher :
Elsevier
Volume :
4
Issue :
5
Pages :
398-406
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
fund for China Agriculture Research System (No. CYTX-014); Agricultural Science and Technology Innovation Program of CAAS; Program of Science and Technology Cooperation with Hong Kong, Macao, and Taiwan, China (No. 2013DFH30050); Special fund for Agro-scientific Research in the Public Interest (No. 201403063)
[1] Mubarak, A.E., Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 89 (2005), 489–495.
[2] Li, G.H., Wan, J.Z., Le, G.W., Shi, Y.H., Novel angiotensin I-converting enzyme inhibitory peptides isolated from alcalase hydrolysate of mung bean protein. J. Pept. Sci. 12 (2006), 509–514.
[3] Soucek, J., Skvor, J., Pouckova, P., Matousek, J., Slavík, T., Mung bean sprout (Phaseolus aureus) nuclease and its biological and antitumor effects. Neoplasma 53 (2005), 402–409.
[4] Randhir, R., Kalidas, S., Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovative Food Sci. Emerg. Technol. 8 (2007), 197–204.
[5] Yao, Y., Chen, F., Wang, M.F., Wang, J.S., Ren, G.X., Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. J. Agric. Food Chem. 56 (2008), 8869–8873.
[6] Y. Saito, Y. Ota, S Suzuki, Elongation inhibitor of dendrite of melanocyte and cosmetic comprising the same, Japan Patent. No. 154919, 2002.
[7] Chen, Z., Sagis, L., Legger, A., Linssen, J.P.H., Schols, H.A., Voragen, A.G.J., Evaluation of starch noodles made from three typical Chinese sweet-potato starches. J. Food Sci. 67 (2002), 3342–3347.
[8] Cummings, J.H., Beatty, E.R., Kingman, S.M., Bingham, S.A., Englyst, H.N., Digestion and physiological properties of resistant starch in the human large bowel. Brit. J. Nutr. 75 (1996), 733–747.
[9] Uthumporn, U., Zaidul, I.S., Karim, A.A., Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food Bioprod. Process. 88 (2010), 47–54.
[10] Tachibana, N., Wanezaki, S., Nagata, M., Motoyama, T., Kohno, M., Kitagawa, S., Intake of mung bean protein isolate reduces plasma triglyceride level in rats. Funct. Foods Health Dis. 3 (2013), 365–376.
[11] Botinestean, C., Hadaruga, N.G., Hadaruga, D.I., Jianu, I., Fatty acids composition by gas chromatography–mass spectrometry (GC–MS) and most important physical-chemicals parameters of tomato seed oil. J. Agroaliment. Process. Technol. 18 (2012), 89–94.
[12] Mattila, P., Pihlava, J.M., Hellström, J., Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 53 (2005), 8290–8295.
[13] Li, S.L., Gao, Q.Y., Ward, R., Physicochemical properties and in vitro digestibility of resistant starch from mung bean (Phaseolus radiatus) starch. Starch-Stärke 63 (2011), 171–178.
[14] Wang, L.X., Chen, X.Z., Wang, S.H., Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiate L.). Sci. Agric. Sin. 42 (2009), 1519–1527 (in Chinese with English abstract).
[15] Liu, C.Y., Chen, X.Z., Wang, S.H., Wang, L.X., Sun, L., Mei, L., Xu, N., The genetic diversity of mungbean germplasm in China. J. Plant Genet. Resour. 7 (2006), 459–463 (in Chinese with English abstract).
[16] AOAC, Official Methods of Analysis. 15th ed., 1990, Association of Official Analytical Chemists, Arlington, VA, USA.
[17] Miao, X.F., Zhu, M.X., Xu, W.P., Shen, H.B., Du, S.W., Pei, Y.F., Chen, Q.S., Hu, G.H., Rapid determination on fatty acids content by gas chromatography in soybean. Soybean Sci. 23 (2010), 1037–1044 (in Chinese with English abstract).
[18] Qin, P.Y., Song, W.W., Yang, X.S., Sun, S., Zhou, X.R., Yang, R.P., Li, N., Hou, W.S., Wu, C.X., Han, T.F., Ren, G.X., Regional distribution of protein and oil compositions of soybean cultivars in China. Crop Sci. 54 (2014), 1139–1146.
[19] Qin, P.Y., Wang, Q., Shan, F., Hou, Z.H., Ren, G.X., Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 45 (2010), 951–958.
[20] Yen, G.C., Chen, H.Y., Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43 (1995), 27–32.
[21] Yao, Y., Ren, G.X., Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. Lwt-Food Sci. Technol. 44 (2011), 181–185.
[22] López, A., El-Naggar, T., Dueñas, M., Ortega, T., Estrella, I., Hernández, T., Carretero, M.E., Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris). Food Chem. 138 (2013), 547–555.
[23] Zhang, Y., Wang, L., Yao, Y., Yan, J., He, Z.H., Phenolic acid profiles of Chinese wheat cultivars. J. Cereal Sci. 56 (2012), 629–635.
[24] Yao, Y., Sang, W., Zhou, M.J., Ren, G.X., Phenolic composition and antioxidant activities of 11 celery cultivars. J. Food Sci. 75 (2010), C9–C13.
[25] Hoover, R., Li, Y.X., Hynes, G., Senanayake, N., Physicochemical characterization of mung bean starch. Food Hydrocoll. 11 (1997), 401–408.
[26] Nielsen, T.S., Theil, P., Purup, S., Nørskov, N., Bach Knudsen, K.E., Effects of resistant starch and arabinoxylan on parameters related to large intestinal and metabolic health in pigs fed fat rich diets. J. Agric. Food Chem. 63 (2015), 10418–10430.
[27] Kim, K.B., Nam, Y.A., Kim, H.S., Hayes, A.W., Lee, B.M., α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 70 (2014), 163–178.
[28] Dahiya, P.K., Linnemann, A.R., Nout, M.J.R., Van Boekel, M.A.J.S., Grewal, R.B., Nutrient composition of selected newly bred and established mung bean varieties. Lwt-Food Sci. Technol. 54 (2013), 249–256.
[29] Bhandare, P., Madhavan, P., Rao, B.M., Rao, N.S., Determination of amino acid without derivatization by using HPLC-HILIC column. J. Chem. Pharm. Res. 2:2 (2010), 372–380.
[30] Peng, X., Zheng, Z., Cheng, K.W., Shan, F., Ren, G.X., Chen, F., Wang, M., Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem. 106 (2008), 475–481.
[32] Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H., Ren, G.X., Biological potential of sixteen legumes in China. Int. J. Mol. Sci. 12 (2011), 7048–7058.
[33] Yao, Y., Sang, W., Zhou, M.J., Ren, G.X., Antioxidant and α-glucosidase inhibitory activity of colored grains in China. J. Agric. Food Chem. 58 (2009), 770–774.
[34] Yao, Y., Cheng, X.Z., Wang, S.H., Wang, L.X., Ren, G.X., Influence of altitudinal variation on the antioxidant and antidiabetic potential of azuki bean (Vigna angularis). Int. J. Food Sci. Nutr. 63 (2012), 117–124.
[35] Yao, Y., Cheng, X.Z., Wang, L.X., Wang, S.H., Ren, G.X., Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. Int. J. Mol. Sci. 13 (2012), 2707–2716.
[36] Zhou, S.H., Fang, Z.X., Lü, Y., Chen, J.C., Liu, D.H., Ye, X.Q., Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem. 112 (2009), 394–399.
[37] Beretta, G., Granata, P., Ferrero, M., Orioli, M., Facino, R.M., Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 533 (2005), 185–191.