Article (Scientific journals)
Continuously Differentiable Functions on Compact Sets
Loosveldt, Laurent; Wengenroth, Jochen; Frerick, Leonhard
2020In Results in Mathematics, 75 (4)
Peer Reviewed verified by ORBi
 

Files


Full Text
Frerick_et_al-2020-Results_in_Mathematics.pdf
Author preprint (425.43 kB)
Download

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Differentiability on compact sets; Whitney jets
Abstract :
[en] We consider the space C^1(K) of real-valued continuously differentiable functions on a compact set K ⊆ Rd. We characterize the completeness of this space and prove that the restriction space C^1(Rd|K) ={f|K : f ∈ C1(Rd)} is always dense in C1(K). The space C1(K) is then compared with other spaces of differentiable functions on compact sets.
Disciplines :
Mathematics
Author, co-author :
Loosveldt, Laurent  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Wengenroth, Jochen;  Université de Trèves - Universität Trier
Frerick, Leonhard;  Université de Trèves - Universität Trier
Language :
English
Title :
Continuously Differentiable Functions on Compact Sets
Alternative titles :
[en] Fonctions continument dérivables sur
Publication date :
December 2020
Journal title :
Results in Mathematics
ISSN :
1422-6383
eISSN :
1420-9012
Publisher :
Springer, Germany
Volume :
75
Issue :
4
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
ULiège - Université de Liège
UniGR - Université de la Grande Région
Available on ORBi :
since 28 October 2020

Statistics


Number of views
91 (6 by ULiège)
Number of downloads
583 (5 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenCitations
 
2
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi