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Abstract. We consider the space C1(K) of real-valued continuously dif-
ferentiable functions on a compact set K ⊆ R

d. We characterize the com-
pleteness of this space and prove that the restriction space C1(Rd|K) =
{f |K : f ∈ C1(Rd)} is always dense in C1(K). The space C1(K) is then
compared with other spaces of differentiable functions on compact sets.
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1. Introduction

In most analysis textbooks differentiability is only treated for functions on
open domains and, if needed, e.g., for the divergence theorem, an ad hoc gen-
eralization for functions on compact sets is given. We propose instead to define
differentiability on arbitrary sets as the usual affine-linear approximability—
the price one has to pay is then the definite article: Instead of the derivative
there can be many. We will only consider compact domains in order to have
a natural norm on our space. The results are easily extended to σ-compact
(and, in particular, closed) sets.

An R
n-valued function f on a compact set K ⊆ R

d is said to belong
C1(K,Rn) if there exits a continuous function df on K with values in the
linear maps from R

d to R
n such that, for all x ∈ K,

lim
y→x
y∈K

f(y) − f(x) − df(x)(y − x)
|y − x| = 0, (1)
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where | · | is the euclidean norm. For n = 1 we often identify R
d with its dual

and write 〈·, ·〉 for the evaluation which is then the scalar product. Questions
about C1(K,Rn) easily reduce to the case C1(K) = C1(K,R).

Of course, equality (1) means that df is a continuous (Fréchet) derivative
of f on K. As in the case of open domains, every f ∈ C1(K) is continuous
and we have the chain rule: For all (continuous) derivatives df of f on K and
dg of g on f(K) the map x �→ dg(f(x)) ◦ df(x) is a (continuous) derivative of
g ◦ f on K.

In general, a derivative need not be unique. For this reason, a good tool
to study C1(K) is the jet space

J 1(K) = {(f, df) : df is a continuous derivative of f on K}
endowed with the norm

‖(f, df)‖J 1(K) = ‖f‖K + ‖df‖K ,

where ‖ · ‖K is the uniform norm on K and |df(x)| = sup{|df(x)(v)| : |v| ≤ 1}.
For the projection π(f, df) = f we have C1(K) = π(J 1(K)), and we equip
C1(K) with the quotient norm, i.e.,

‖f‖C1(K) = ‖f‖K + inf{‖df‖K : df is a continuous derivative of f on K}.

It seems that the space C1(K) did not get much attention in the litera-
ture. This is in sharp contrast to the “restriction space” C1(Rd|K) = {f |K :
f ∈ C1(Rd)}. Obviously, the inclusion C1(Rd|K) ⊆ C1(K) holds but it is well-
known that, in general, it is strict. Simple examples are domains with inward
directed cusps like

K = {(x, y) ∈ [−1, 1]2 : |y| ≥ e−1/x for x > 0}.

The function f(x, y) = e−1/(2x) for x, y > 0 and f(x, y) = 0 elsewhere, is in
C1(K) but it is not the restriction of a C1-function on R

2 because is is not
Lipschitz continuous near the origin.

In a famous paper from 1934 [1], Whitney proved that C1(Rd|K) =
π(E 1(K)) where E 1(K) is the space of jets (f, df) for which the limit (1) is
uniform in x ∈ K. Moreover, E 1(K) endowed with the norm

‖(f, df)‖E 1(K) = ‖(f, df)‖J 1(K) + sup
{ |f(y) − f(x)|

|y − x| : x, y ∈ K, y �= x

}

is a Banach space. Thus, C1(Rd|K) equipped with the quotient norm
‖ · ‖C1(Rd|K) inherited from ‖ · ‖E 1(K) is also a Banach space.

Since their introduction, Whitney jets (also of higher orders) have been
widely studied, in particular in the context of extension operators [2–5]. Gener-
alizations of them have been defined in various contexts such as Baire functions
[6], holomorphic functions [7], Sobolev spaces [8,9], so-called Cm,ω(Rd) spaces
[10] or (generalized) Hölder spaces [11].
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In this paper, we prove that E 1(K) is always a dense subset of J 1(K).
The density of C1(Rd|K) in C1(K) is then an immediate consequence. To-
gether with a characterization of the completeness of (C1(K), ‖ · ‖C1(K)), this
leads to a simple geometric criterion for the equality C1(K) = C1(Rd|K) as
Banach spaces. In the one-dimensional case, we also give a characterization of
the mere algebraic equality.

If the compact set K is topologically regular, i.e., the closure of its inte-
rior, another common way to define differentiability is the space

C1
int(K) = {f ∈ C(K) : f |K̊ ∈ C1(K̊) and df extend continuously to K},

see for instance [12,13]. For f ∈ C1
int(K) we will denote the unique continuous

extension to K of the derivative again by df .
In this topologically regular situation, the derivative of a continuously

differentiable function on K is uniquely determined by the function, which
means that the projection π is injective on J 1(K) and therefore C1(K) and
J 1(K) as well as C1(Rd|K) and E 1(K), respectively, can be identified.

Equipped with the norm ‖f‖K+‖df‖K , it is clear that C1
int(K) is always a

Banach space which contains C1(K). Despite this nice aspect we will see by an
example of Sauter [14] that C1

int(K) has a dramatic drawback: Compositions
of C1

int(K)-functions need not be differentiable.
We will present some results about equalities between C1

int(K), C1(Rd|K)
and C1(K) which are related to the so-called “Whitney conjecture” ([9,15]).

The paper is organized as follows. In Sect. 2, we start with some more
or less standard facts about rectifiable paths and integration along them to
establish the fundamental theorem of calculus for C1(K)-functions, and we
present the above mentioned example of Sauter of C1

int-functions where this
result fails. In Sect. 3 we characterize the completeness of C1(K) by a simple
geometric condition, and in Sect. 4, we prove the density of C1(Rd|K), which
relies on very deep results of Smirnov [16]. In Sect. 5, we compare the spaces
C1(Rd|K), C1(K) and C1

int(K) and finally, we complement this with specific
results for compact subsets of R.

2. Path Integrals

A function f ∈ C1(K) need not be Lipschitz continuous because segments with
endpoints in K, to which one would like to apply the mean value theorem, need
not be contained in K. Instead of segments one then has to consider rectifiable
paths in K, i.e., continuous functions γ : [a, b] → K such that the length

L(γ) = sup

⎧⎨
⎩

n∑
j=1

|γ(tj) − γ(tj−1)| : a = t0 < · · · < tn = b

⎫⎬
⎭

is finite. The function �(t) = L(γ|[a,t]) is then continuous: Given ε > 0 and
a partition such that the length of the corresponding polygon is bigger than
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L(γ)−ε, every interval [r, s] lying between two consecutive points of the parti-
tion satisfies �(s) − �(r) = L(γ[r,s]) ≤ |γ(s) − γ(r)| + ε. For the minimal length
of the subintervals of the partition one then easily gets the required continuity
estimate.

Proposition 2.1. (Mean value inequality) Let f ∈ C1(K) and x, y ∈ K. If
df is a derivative of f on K and if x and y are joined by a rectifiable path
γ : [a, b] → K, then

|f(y) − f(x)| ≤ L(γ) sup{|df(z)| : z ∈ γ([a, b])}. (2)

Proof. We essentially repeat Hörmander’s proof [17, theorem 1.1.1]. For each
c > sup{|df(z)| : z ∈ γ([a, b])} the set T = {t ∈ [a, b] : |f(γ(t))− f(x)| ≤ c�(t)}
is non-empty and closed because of the continuity of f ◦ γ and �, hence is has
a largest element t ∈ [a, b]. If t were different from b, the differentiability of f
at z = γ(t) gives a neighbourhood U of z such that

|f(z) − f(w)| ≤ |f(z) − f(w) − df(z)(z − w)| + |df(z)(z − w)| ≤ c|z − w|
for all w ∈ U . By the continuity of γ we find s > t with γ(s) ∈ U so that

|f(γ(s)) − f(x)| ≤ |f(γ(s)) − f(γ(t))| + c�(t) ≤ c|γ(s) − γ(t)| + c�(t) ≤ c�(s),

contradicting the maximality of t. �

The mean value inequality does not use the continuity of a derivative and
has the usual consequences. For example, if df = 0 is a derivative of f and K
is rectifiably pathwise connected (a certainly self-explaining notion) then f is
constant.

Our next aim is to show that a continuous derivative integrates back
to the function along rectifiable paths. We first recall the relevant notions. If
F : K → R

d is continuous and γ is a rectifiable path in K we define the path
integral

∫
γ

F as the limit of Riemann-Stieltjes sums
n∑

j=1

〈F (γ(τj)), γ(tj) − γ(tj−1)〉

where a = t0 < . . . < tn = b are partitions with max{tj−tj−1 : 1 ≤ j ≤ n} → 0
and tj−1 ≤ τj ≤ tj . The existence of the limit is seen from an appropriate
Cauchy condition (or by using the better known one-dimensional case where
rectifiable paths are usually called functions of bounded variation). If γ is even
absolutely continuous, i.e., there is a Lebesgue integrable γ̇ : [a, b] → R

d with
γ(β) − γ(α) =

∫ β

α
γ̇(t)dt for all α ≤ β, one gets from the uniform continuity of

F ◦ γ the familiar representation∫
γ

F =
∫ b

a

〈F (γ(t)), γ̇(t)〉dt.

If γ is even continuously differentiable and F = df for a function f ∈ C1(K),
the integrand in the last formula is the derivative of f ◦ γ (by the chain rule)
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and the fundamental theorem of calculus gives
∫

γ
df = f(γ(b)) − f(γ(a)).

Since continuous differentiability of γ is a not a realistic assumption in our
considerations (interesting phenomena typically occur for quite rough compact
sets K), we need a more general version:

Theorem 2.2. (Fundamental theorem of calculus) For each f ∈ C1(K) with a
continuous derivative df and each rectifiable γ : [a, b] → K we have∫

γ

df = f(γ(b)) − f(γ(a)). (3)

Proof. Given a partition a = t0 < . . . < tn = b and a fixed j ∈ {1, . . . , n} we
set z = γ(tj) and apply the mean value inequality to the function

g(x) = f(x) − f(z) − 〈df(z), x − z〉
on γ([tj−1, tj ]). Since dg(x) = df(x) − df(z) is a derivative of g, we obtain

|f(γ(tj)) − f(γ(tj−1)) − 〈df(γ(tj)), γ(tj) − γ(tj−1)〉|
= |g(γ(tj−1)) − g(z)| ≤ L(γ|[tj−1,tj ])

sup{|df(γ(t)) − df(γ(tj−1)| : t ∈ [tj−1, tj ]}.

The uniform continuity of df ◦ γ yields that this supremum is small whenever
the partition is fine enough. The theorem then follows by writing f(γ(b)) −
f(γ(a)) as a telescoping sum and inserting these estimates together with the
obvious additivity of the length. �

Below, we will need a slightly more general version of the fundamental
theorem: The formula

∫
γ

df = f ◦ γ|ba holds if f and df are continuous on K

and df(x) is a derivative of f at x for all but finitely many x ∈ γ([a, b]).
Indeed, if only the endpoints γ(a) and γ(b) are exceptional, this follows

from a simple limiting argument, the general case is then obtained by decom-
posing the integral

∫
γ

df into a sum.
In the proof of Proposition 3.4, we will have to find a rectifiable path

by using the Arzelá-Ascoli theorem. It is then essential to have a “tame”
parametrization which we explain briefly; more details can be found, e.g., in
[18]. Given a continuous γ : [a, b] → R

d with length L = L(γ) and length
function �(t) = L(γ|[a,t]), the function α(s) = inf{t ∈ [a, b] : �(t) ≥ s} is again
increasing but not necessarily continuous, it jumps over the intervals where �
is constant. Nevertheless, γ̃ = γ ◦ α : [0, L] → R

d is a continuous path with
γ̃([0, L]) = γ([a, b]) such that all path integrals along γ and γ̃ coincide and such
that L(γ̃|[0,t]) = t for all t ∈ [0, L]; in particular, γ̃ is Lipschitz with constant
1. This path γ̃ is called the parametrization of γ by arclength.

If {γi : i ∈ I} is a family of curves with equal length, it then follows that
{γ̃i : i ∈ I} is equicontinuous. Moreover, Rademacher’s theorem implies that
γ̃ is almost everywhere differentiable and absolutely continuous.

We have seen that the behaviour of functions f ∈ C1(K) concerning
compositions and the fundamental theorem together with its consequences



  177 Page 6 of 19 L. Frerick et al. Results Math

is essentially as in the case of open domains. We will now present Sauter’s
example [14] showing that this not the case for f ∈ C1

int(K).
Let C be the ternary Cantor set and U its complement in (0, 1). The

open set Ω is constructed from U × (0, 1) by removing disjoints closed balls
(Bj)j∈N that accumulate precisely at C × [0, 1] and such that the sum of their
diameters is < 1/4. This implies that there exist horizontal lines that do not
intersect any of the balls and are thus contained in K = Ω.

If f is the Cantor function on [0, 1], we consider the function F defined
on K by F (x, y) = f(x). We have F ∈ C1

int(K) because it is continuous and
dF = 0 on Ω = K̊, as f is locally constant on U . If now γ : [0, 1] → K is the
obvious left-to-right arclength parametrization of one of the horizontal lines
crossing K, we have∫

γ

dF = 0 while F (γ(1)) − F (γ(0)) = f(1) − f(0) = 1.

This proves F /∈ C1(K). This example shows that the fundamental theo-
rem does not hold for C1

int and also reveals the catastrophe that compositions
(namely F ◦ γ) of C1

int-functions need not be C1
int.

3. Completeness

We study here the completeness of (C1(K), ‖·‖C1(K)) and (J 1(K), ‖·‖J 1(K)).
We show that, if K has infinitely many connected components, then these
spaces are not complete. In contrast, if K has finitely many connected com-
ponents, the completeness of both spaces is characterized by a pointwise geo-
metric condition whose uniform version goes back to Whitney in [15]. It is
interesting to note that this characterization is conjectured in [19] in the con-
text of complex differentiability.

First we consider the case of compact sets with infinitely many connected
components. This is similar to [20, Theorem 2.3].

Proposition 3.1. If K is a compact set with infinitely many connected compo-
nents, then (C1(K), ‖ · ‖C1(K)) is incomplete.

Proof. We can partition S0 = K into two non-empty, disjoint sets S1 and K1,
both closed and open subsets of K, such that S1 has infinitely many connected
components. Iterating this procedure we obtain a sequence (Kj)j∈N of pairwise
disjoint non-empty closed and open subsets of K.

We fix xj ∈ Kj and, by compactness and passing to a subsequence, we
can assume that xj converges in K. The limit x0 cannot belong to any Kj

because they are open and pairwise disjoint.
We consider the functions fn : K → R defined by fn(x) = |xj − x0| for

x ∈ Kj with 1 ≤ j ≤ n and fn(x) = 0, else. These functions are locally constant
and hence fn ∈ C1(K). It is easy to check that (fn)n∈N is a Cauchy sequence
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in (C1(K), ‖ · ‖C1(K)). The only possible limit is the function f(x) = |xj − x0|
for all x ∈ Kj and j ∈ N and f(x) = 0 otherwise. But, for all j ∈ N, we have

|f(xj) − f(x0)|
|xj − x0| = 1,

and since dfn = 0 this shows that f cannot be the limit in C1(K). �
A set K ⊆ R

d is called Whitney regular if there exists C > 0 such that
any two points x, y ∈ K can be joined by a rectifiable path in K of length
bounded by C|x − y|; sometimes this condition is called quasiconvexity, e.g.,
in the book [21].

We say that K is pointwise Whitney regular if, for every x ∈ K, there
are a neighbourhood Vx of x and Cx > 0 such that any y ∈ Vx is joined to x
by a rectifiable path in K of length bounded by Cx|x − y|.

The inward cusp mentioned in the introduction distinguishes these two
notions. If K is geodesically bounded (i.e., any two points can be joined by
a curve of length bounded by a fixed constant) one can take Vx = K in
the definition so that the crucial difference is then the non-uniformity of the
constants Cx.

Proposition 3.2. If K is a pointwise Whitney regular compact set, then the
space (J 1(K), ‖ · ‖J 1(K)) is complete.

Proof. For a Cauchy sequence ((fj , dfj))j∈N in J 1(K) we get from the com-
pleteness of C(K) uniform limits f and df and we only have to show that df
is a derivative of f .

Given x ∈ K and a path γ from x to y of length L(γ) ≤ Cx|x − y|, the
formula in the fundamental theorem of calculus immediately extends from fj

and dfj to the limits and thus gives

f(y) − f(x) − 〈df(x), y − x〉 =
∫

γ

(df − df(x)).

The continuity of df and the bound on L(γ) then easily imply the desired
differentiability. �

To obtain the converse of this simple result we first apply the uniform
boundedness principle to show that the completeness of (C1(K), ‖ · ‖C1(K)) is
equivalent to some bounds for the difference quotient of a function f ∈ C1(K).
This is the same as in the case of complex differentiability [20,22].

Proposition 3.3. The following assertions are equivalent:
(a) The space (J 1(K), ‖ · ‖J 1(K)) is a Banach space.
(b) The space (C1(K), ‖ · ‖C1(K)) is a Banach space.
(c) For every x ∈ K, there exists Cx > 0 such that for all f ∈ C1(K) and

y ∈ K\{x}
|f(y) − f(x)|

|y − x| ≤ Cx‖f‖C1(K). (4)
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Proof. That (a) implies (b) is a standard fact from Banach space theory. Let
us show that the second assertion implies the third. For fixed x ∈ K and each
y ∈ K\{x} we define a linear and continuous functional on C1(K) by

Φy(f) =
f(y) − f(x)

|y − x| .

For fixed f ∈ C1(K), we get a bound for supy∈K\{x} |Φy(f)| because of the
differentiability at x.

The Banach-Steinhaus theorem thus gives

Cx = sup{|Φy(f)| : ‖f‖C1(K) ≤ 1, y ∈ K\{x}} < ∞.

Now we assume that inequality (4) holds and show that (J 1(K), ‖ ·
‖J 1(K)) is complete. For a Cauchy sequence ((fj , dfj))j∈N in J 1(K) we have
uniform limits f and df . In particular, for all ε > 0, x ∈ K, and p < q big
enough, we have

‖fp − fq‖C1(K) ≤ ‖(fp, dfp) − (fq, dfq)‖J 1(K) <
ε

4Cx
and ‖dfp − df‖K <

ε

4
.

Now, there exists δ > 0 such that, for all y ∈ B(x, δ)\{x},

B =
|fp(y) − fp(x) − 〈dfp(x), y − x〉|

|y − x| <
ε

4
.

Finally, for all such y, if q is large enough,

A =
|(f(y) − fq(y)) − (f(x) − fq(x))|

|y − x| <
ε

4
,

and an application of inequality (4) to fp − fq then yields

|f(y) − f(x) − 〈df(x), y − x〉|
|x − y|

≤ A +
|(fp(y) − fq(y)) − (fp(x) − fq(x))|

|y − x| + B + |dfp(x) − df(x)| < ε,

which shows that df is a derivative of f on K. �

Next we show that, for connected sets K, inequality (4) implies pointwise
regularity. This is a simple adaptation of a result in [17, theorem 2.3.9]; we
repeat the proof for the sake of completeness.

Proposition 3.4. Let K be a compact connected set. If, for any x ∈ K, there
exists Cx > 0 such that for all f ∈ C1(K) and y ∈ K\{x} we have

|f(y) − f(x)|
|y − x| ≤ Cx‖f‖C1(K), (5)

then K is pointwise Whitney regular.
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Proof. For any ε > 0,

Kε = {x ∈ R
d : inf

y∈K
|x − y| < ε}

is an open connected neighbourhood of K. Let us fix x ∈ K and define the
function dε on K2ε by

dε(y) = inf{L(γ) : γ rectifiable path from x to y in K2ε}.

Then, for fixed y0 ∈ K, we set uε(y) = min{dε(y), dε(y0)}. If y and y′ are close
enough in K2ε, we have

|uε(y) − uε(y′)| ≤ |y − y′|, (6)

as any rectifiable path from x to y can be prolonged by the segment between
y and y′ to a rectifiable path from x to y′.

If φ is a positive smooth function with support in B(0, ε) and integral 1,
the convolution uε∗φ, defined in Kε, is a smooth function for which |d(uε∗φ)| ≤
1 on K, because of inequality (6). Then, from (5), we have

|(uε ∗ φ)(x) − (uε ∗ φ)(y0)| ≤ Cx(dε(y0) + 1)|x − y0|
which gives us, passing to the limit supp(φ) → {0},

dε(y0) ≤ Cx(dε(y0) + 1)|x − y0|.
For y0 ∈ B(x, 1

2Cx
)∩K, this implies dε(y0) ≤ 1 and thus dε(y0) ≤ 2Cx|x−y0|.

Hence, there exists a rectifiable path from x to y0 in K2ε of length bounded by
2Cx|x−y0|+ε. Using the parametrization by arc length gives an equicontinuous
family of paths and the conclusion follows from the Arzelá -Ascoli theorem.

�

Remark 3.5. If the constant Cx in previous proposition is uniform with respect
to x ∈ K, then inequality (6) is equivalent to the Whitney regularity of K, as
stated in Hörmander’s book.

Collecting all the results of this section, we have the following character-
ization of the completeness of (C1(K), ‖ · ‖C1(K)).

Theorem 3.6. (C1(K), ‖·‖C1(K)) is complete if and only if K has finitely many
components which are pointwise Whitney regular.

Remark 3.7. In this pointwise Whitney regular situation, the jet space J 1(K)
can be described as a space of continuous “circulation free vector fields” F on
K, i.e., vector fields F for which

∫
γ

F = 0 for all closed rectifiable paths γ in
K. More precisely, if (f, df) ∈ J 1(K), the fundamental theorem of calculus
implies that df is circulation free, and if F is circulation free and continuous
we can define, for some fixed x0 ∈ K, for all x ∈ K

f(x) =
∫

γ

F,
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where γ is a path in K from x0 to x. This definition makes sense as F is
circulation free and F is a continuous derivative of f on K, by a similar
argument as in the proof of Proposition 3.2.

4. Density of Restrictions

In this section we will show that the space C1(Rd|K) of restrictions of con-
tinuously differentiable functions on R

d to K is always dense in C1(K). As
D(Rd), the space of C∞-functions with compact support, is dense in C1(Rd),
this is the same as the density of test functions restricted to K in C1(K) and
again, it is advantageous to consider this question on the level of jets, that is,
we will show that

i : D(Rd) → J 1(K), ϕ �→ (ϕ|K , dϕ|K)

has dense range.
For general K, the standard approximation procedures like convolution

with smooth bump functions do not apply easily, and we will use the Hahn–
Banach theorem instead.

A continuous linear functional Φ on J 1(K) ⊆ C(K)d+1 is, by the Hahn–
Banach and Riesz’s representation theorem, given by signed measures μ, μ1,
. . . , μd on K via

Φ(f, df) =
∫

fdμ +
d∑

j=1

∫
djfdμj ,

where djf are the components of df . If Φ vanishes on the image of i we have,
for all ϕ ∈ D(Rd),

∫
ϕdμ +

d∑
j=1

∫
∂jϕdμj = 0.

For the distributional derivatives of the measures this means that

μ =
d∑

j=1

∂jμj = div(T )

where T = (μ1, . . . , μd) is a vector field of measures or a charge.
Fortunately, such charges were thoroughly investigated by Smirnov in

[16]. Roughly speaking, he proved a kind of Choquet representation of charges
in terms of very simple ones induced by Lipschitz paths in K. If γ : [a, b] → K
is Lipschitz with a.e. derivative γ̇ = (γ̇1, . . . , γ̇d) and F = (F1, . . . , Fd) is a
continuous vector field, we have, as noted in Sect. 2,

∫
γ

F =
∫ b

a

〈F (γ(t)), γ̇(t)〉dt =
d∑

j=1

∫ b

a

Fj(γ(t))γ̇j(t)dt.
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In order to see this as the action 〈T, F 〉 =
d∑

j=1

∫
Fjdμj of a charge T =

(μ1, . . . , μd), we denote by μj the image (or push-forward) under γ of the
measure with density γ̇j on [a, b] so that

∫
Fj(γ(t))γ̇j(t)dt =

∫
Fjdμj . For the

charge Tγ = (μ1, . . . , μd) we then have

〈Tγ , F 〉 =
∫

γ

F.

The fundamental theorem of calculus for ϕ ∈ D(Rd) with derivative dϕ
then gives

div(Tγ)(ϕ) = −
∫

γ

dϕ = ϕ(γ(a)) − ϕ(γ(b)) = (δγ(a) − δγ(b))(ϕ), that is

div(Tγ) = δb(γ) − δe(γ)

where b(γ) and e(γ) denote the beginning and the end of γ (the change of signs
comes from the minus sign in the definition of distributional derivatives).

To formulate Smirnov’s results we write Γ for the set of all Lipschitz
paths in R

d. Moreover, for a charge T we denote by

‖T‖(E) = sup

⎧⎨
⎩

∑
j∈N

|T (Ej)| : (Ej)j∈N is a partition of E

⎫⎬
⎭

the corresponding variation measure.
Given a set S of charges, a charge T is said to decompose into ele-

ments of S if there is a finite, positive measure on ν on S (endowed with the
Borel σ-algebra with respect to the weak topology induced by the evaluation
〈(μ1, . . . , μd), (ϕ1, . . . , ϕd)〉 =

∑d
j=1

∫
ϕj dμj , ϕj ∈ D(Rd)) such that

T =
∫

S
R dν(R) and ‖T‖ =

∫
S

‖R‖dν(R),

where these integrals are meant in the weak sense, i.e., 〈T, ϕ〉 =
∫

S〈R,ϕ〉 dν(R)
for all ϕ ∈ (D(Rd))d. By density and the continuity of charges with respect
to the uniform norm, this extends to all ϕ ∈ (Cc(Rd))d, where Cc(Rd) is the
space of continuous functions with compact support.

We can now state a consequence of Smirnov’s results (theorem C of [16]
is somewhat more precise than we need).

Theorem 4.1. Every charge T with compact support such that div(T ) is a
signed measure can be decomposed into elements of Γ, i.e., there is a posi-
tive finite measure ν on Γ such that

T =
∫

Γ

Tγdν(γ) and ‖T‖ =
∫

Γ

‖Tγ‖dν(γ).
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The decomposition of the corresponding variation measures has the im-
portant consequence that the supports of ν-almost all Tγ are contained in the
support of T (where the supports are meant as the supports of signed measures
which coincide with the supports of the corresponding distributions). After re-
moving a set of ν-measure 0 we can thus assume that all paths involved in the
decomposition of T have values in the support of T . Using the definition of the
distributional derivative we also obtain a decomposition of the divergences:

div(T ) =
∫

Γ

div(Tγ)dν(γ) =
∫

Γ

δb(γ) − δe(γ)dν(γ).

We are now prepared to state and prove the main result of this section.

Theorem 4.2. For each compact set K, the space C1(Rd|K) is dense in C1(K).

Proof. We will show that i : D(Rd) → J 1(K), ϕ �→ (ϕ|K , dϕ|K) has dense
range, the conclusion then follows by projecting onto the first components.

Let us consider Φ ∈ (C(K)d+1)′ such that Φ vanishes on the range of i.
By the Hahn-Banach theorem it is enough to show that Φ|J 1(K) = 0.

As explained at the beginning of this section we get signed measures μ
and μj on K with

Φ((f, f1, · · · , fd)) =
∫

fdμ +
∫

f1dμ1 + · · · +
∫

fddμd

for all (f, f1, · · · , fd) ∈ C(K)d+1, and T = (μ1, · · · , μd) satisfies div(T ) = μ.
We can thus apply theorem 4.1 and get a measure ν and S ⊆ Γ such that all
paths in S have values in K and

T =
∫

S
Tγdν(γ).

For (f, df) = (f, d1f, . . . , ddf) ∈ J 1(K) we extend all components to Cc(Rd)
by Tietze’s theorem and obtain from the fundamental theorem of calculus for
C1(K)-functions∫

d1fdμ1 + · · · +
∫

ddfdμd = 〈T, df〉 =
∫

S
〈Tγ , df〉dν(γ)

=
∫

S
δe(γ)(f) − δb(γ)(f)dν(γ) = −div(T )(f) = −

∫
fdμ,

which means that Φ|J 1(K) = 0. �

The use of the Hahn-Banach theorem has the disadvantage of not giv-
ing any concrete approximations. Let us therefore very briefly mention two
situations where approximations can be described explicitly.

A natural idea is to glue the local approximations given by the definition
of differentiability together with a partition of unity. We decompose R

d into
d-dimensional squares Qj , choose points xj ∈ K ∩ Qj and a partition of unity
(ϕj)j subordinated to slightly bigger squares with a fixed number of overlaps



Continuously Differentiable Functions Page 13 of 19   177 

and bounds on the derivatives |∂kϕj | ≤ Cvol(Qj)−1 as, e.g., in [17, Thm. 1.4.6].
Then one expects

h(x) =
∑

j

ϕj(x) (f(xj) + 〈df(xj), x − xj〉)

to be an approximation in C1(K) of a given f .
However, to estimate ‖df − dh‖K by using theorem 2.2 requires enough

curves in K with uniform bounds on the length, i.e., that K is Whitney regular.
An even simpler approximation works for compact sets which are (locally)

starlike or, in the terminology of Feinstein, Lande and O’Farrell [23] “locally

radially self-absorbing”. In the simplest case, we have K ⊆ r
◦
K for every r > 1.

Then given f ∈ C1(K) one gets an approximation h(x) = f(1
r x) on r

◦
K for r

close to 1 which one can multiply with a cut-off function which is 1 near K
to get an approximation by functions in C1(Rd). This “blow up trick” can be
localized with the aid of a partition of unity.

5. Comparison

In this section, we compare the spaces C1(Rd|K), C1(K) and C1
int(K).

Theorem 5.1. C1(K) = C1(Rd|K) with equivalent norms if and only if K has
only finitely many components which are all Whitney regular.

Proof. Assuming the stated isomorphism of normed spaces we get that C1(K)
is complete and Proposition 3.1 implies that K has only finitely many compo-
nents. Moreover, the equivalence of norms implies |f(y)−f(x)|

|y−x| ≤ C‖f‖C1(K) for
some constant so that Remark 3.5 implies that each component is Whitney
regular.

For the other implication we first note that the global Whitney condition
for each of the finitely many components implies, by the mean value inequality,
the equivalence of the norms ‖ · ‖C1(Rd|K) and ‖ · ‖C1(K) on C1(Rd|K). This is
thus a complete and hence closed subspace of C1(K) and, on the other hand,
it is dense by Theorem 4.2. �

If we assume a priori the completeness of C1(K), i.e., K has finitely many
components which are pointwise Whitney regular, then the algebraic equality
C1(K) = C1(Rd|K) already implies the equivalence of norms by the open
mapping theorem. However, in the next chapter we will see that K = {0} ∪
{2−n : n ∈ N} satisfies C1(K) = C1(R|K) although C1(K) is incomplete. This
means that the algebraic equality, in general, does not imply the equivalence of
norms. Except for the one-dimensional case, we do not know a characterization
of the algebraic equality C1(K) = C1(Rd|K). Nevertheless, we would like to
remark that this property has very poor stability properties. The example of
the inward directed cusp mentioned in the introduction is the union of two
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convex sets whose intersection is an interval (sadly, the two halves of a broken
heart behave better than the intact heart). More surprising is perhaps the
following example showing that the property C1(K) = C1(Rd|K) is not stable
with respect to cartesian products.

Example 5.2. For M = {0} ∪ {2−n : n ∈ N} and K = M × [0, 1] we have
C1(K) �= C1(R2|K).

Proof. We construct a function f ∈ C1(K) which is equal to 0 everywhere
except for some tiny bumps on the segments Sn = {2−n} × [0, 1]. More
precisely, we fix ϕ ∈ C∞(R) with support in [−1, 1] which is bounded in
absolute value by 1, and satisfies ϕ(0) = 1. For (x, y) ∈ Sn we then set
f(x, y) = n−3ϕ(n2(y − 1/n)). It is easy to check that f is differentiable on
K (the only non-obvious point is (0, 0) where the derivative is 0), and that
one can choose a continuous derivative (because the second partial deriva-
tives on Sn are bounded by c/n where c is a bound for the derivative of ϕ).
Hence f ∈ C1(K) but f /∈ C1(R2|K) because f is not Lipschitz continuous as
f(2−n, 1/n) − f(2−n+1, 1/n)) = n−3 which is much bigger than the distance
between the arguments. �

Let us consider now a topologically regular compact set K ⊆ R
d. We can

formulate the main theorem of [15] in this context as follows.

Theorem 5.3. Let K be a topologically regular compact set. If K̊ is Whitney
regular, then C1

int(K) = C1(Rd|K).

In 5.5 we prove that the reverse implication doesn’t hold. This should
be compared with a theorem of [9] about Sobolev regularity: For an open,
connected, and finitely connected set Ω ⊆ R

2 every element of W k
∞(Ω) = {f ∈

Ck−1(Ω) : ∂αf ∈ L∞(Ω) for all |α| = k} is the restriction of a function in
W k

∞(R2) if and only if Ω is Whitney regular. As a preparation, we establish
the following proposition.

Proposition 5.4. Let K be a topologically regular compact set and assume that,
for all x ∈ ∂K, there exist Cx > 0 and a neighbourhood Vx of x in K such that
each y ∈ Vx can be joined from x by a rectifiable path in K̊ ∪ {x, y} of length
bounded by Cx|x − y|. Then C1

int(K) = C1(K).

Proof. Let us take f ∈ C1
int(K). In order to prove that f ∈ C1(K), we just

have to show the differentiability at x ∈ ∂K. For all y ∈ Vx we get from the
remark after the fundamental Theorem 2.2

f(y) − f(x) − 〈df(x), y − x〉 =
∫

γ

(df − df(x)),

where γ is as stated in the assumptions. This is enough to get the differentia-
bility at x, as we did previously in Proposition 3.2. �

We now construct a topologically regular compact connected set whose
interior is not Whitney regular, but where equality C1

int(K) = C1(Rd|K) holds.
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Example 5.5. Let Ω be the open unit disk in R
2 from which we remove, as in

Sauter’s example, sufficiently tiny disjoints balls which accumulate precisely
at S = {0} × [− 1

2 , 1
2 ]. Then K = Ω is connected, topologically regular and

Whitney regular (by the same argument as explained below). In particular,
from Theorem 5.1, we know that C1(R2|K) = C1(K).

Of course, K̊ is not Whitney regular, because S is not contained in K̊, but
the assumptions of proposition 5.4 are satisfied and hence C1(K) = C1

int(K):
Indeed, a boundary point x of K is either a boundary point of the unit disc or of
one of the tiny removed discs in which cases the condition is clear, or x is on the
segment S. If then y is a point of K̊ not lying on the {0}× [−1, 1], we consider
the line from y to x (which meets S only at the endpoint) and, whenever this
line intersects one of the removed discs, we replace this intersection by a path
through K̊ which is parallel to the boundary of the little disc. The total length
increase of this new path is by a factor π. Finally, if z ∈ K is arbitrary, we
can use the preceding argument to connect z by a very short path to some y
as considered before which we then connect to x.

To give a partial converse of Whitney’s Theorem 5.3 we state the following
consequence of 3.6.

Proposition 5.6. Let K be a topologically regular compact set. If C1
int(K) =

C1(K) (in particular, if C1
int(K) = C1(Rd|K) holds), then K has only finitely

many connected components which are all pointwise Whitney regular.

Proof. If C1
int(K) = C1(K), then (C1(K), ‖ · ‖C1(K)) is complete and hence

theorem 3.6 implies the stated properties of K. �

6. The One-dimensional Case

In this last section we completely characterize the equality between the three
spaces of C1-functions for compact subsets of R. Of course, all three spaces
coincide for topologically regular compact sets with only finitely many compo-
nents, and otherwise C1(K) is incomplete by Proposition 3.1 and thus different
from C1

int(K). The remaining question of when C1(K) = C1(R|K) holds alge-
braically (the equality as Banach spaces with equivalent norms is characterized
in theorem 5.1) will depend on the behaviour of the bounded connected com-
ponents of R\K which we call gaps of K. These are thus maximal bounded
open intervals G in the complement, and we denote their length by �(G).

The simple idea is that small gaps are dangerous for the Lipschitz con-
tinuity on K which is a necessary condition for C1-extendability. In fact, we
will show that C1(K) �= C1(R|K) whenever there are ξ ∈ K and nearby gaps
of K of length much smaller than the distance of the gap to ξ. To be precise,
we define, for positive ε,

σε(ξ) = sup
{

sup{|y − ξ| : y ∈ G}
�(G)

: G ⊆ (ξ − ε, ξ + ε) is a gap of K

}
,
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where sup ∅ = 0. Of course, these [0,∞]-valued functions are increasing with
respect to ε and thus we can define the gap-structure function

σ(ξ) = lim
ε→0

σε(ξ).

Theorem 6.1. For a compact set K ⊆ R we have C1(K) = C1(R|K) if and
only if σ(ξ) < ∞ for all ξ ∈ K.

Before giving the proof let us discuss some examples. The Cantor set K
satisfies σ(ξ) = ∞ for all ξ ∈ K so that C1(K) �= C1(R|K).

Other simple examples are sets of the form K = {0} ∪ {xn : n ∈ N} for
decreasing sequences xn → 0. Then σ(xn) = 0 for all n ∈ N and only the
behaviour of σ(0) depends on the sequence. Since the gaps of K are (xn+1, xn)
we get σ(0) = lim sup xn

xn−xn+1
. This is finite for fast sequences like xn = a−n

with a > 1 but infinite for slower sequences like xn = n−p for p > 0.
This class of examples can be easily modified to topologically regular sets

of the form K = {0} ∪ ⋃
n∈N

[xn, xn + rn]. For rn = e−2n we get σ(0) < ∞,
e.g., for xn = e−n and σ(0) = ∞ for xn = 1/n.

Proof. We will use Whitney’s [1] characterization that f ∈ C1(R|K) if and
only if, for all non-isolated ξ ∈ K,

lim
x,y→ξ

f(x) − f(y)
x − y

= f ′(ξ).

Let us first assume σ(ξ) = ∞ for some ξ ∈ K. There is thus a sequence of gaps
Gn = (an, bn) ⊆ (ξ − 1/n, ξ + 1/n) with sup{|y − ξ| : y ∈ Gn}/|an − bn| > 2n.
Passing to a subsequence, we may assume that all these gaps are on the same
side of ξ, say ξ < an < bn, so that bn − ξ > 2n(bn − an).

Moreover, again by passing to a subsequence and using σε(ξ) = ∞ for ε =
(bn − an)/2, we can reach bn+1 < an and that the midpoints yn = (an + bn)/2
of the gaps satisfy

yn − yn+1

bn − an
≥ n.

We now define f : K → R by f(x) = (yn − ξ)/n for x ∈ K ∩ (yn, yn−1) (with
y0 = ∞) and f(x) = 0 for x ≤ ξ. Since the jumps of f are outside K it is clear
that f is differentiable at all points x ∈ K\{ξ} with f ′(x) = 0. To show the
differentiability at ξ with f ′(ξ) = 0 we calculate for x ∈ K ∩ (yn, yn−1)∣∣∣∣f(x) − f(ξ)

x − ξ

∣∣∣∣ =
∣∣∣∣ (yn − ξ)/n

x − ξ

∣∣∣∣ ≤
∣∣∣∣ (yn − ξ)/n

yn − ξ

∣∣∣∣ ≤ 1
n

.

Thus, f ∈ C1(K) but f /∈ C1(R|K) because
f(bn) − f(an)

bn − an
=

(yn − ξ)/n − (yn+1 − ξ)/(n + 1)
bn − an

≥ (yn − yn+1)/n

bn − an
≥ 1.

Let us now assume σ(ξ) < ∞ for all ξ ∈ K. To prove that every f ∈
C1(K) belongs to C1(R|K), we first show that we can assume f ′ = 0. Indeed,
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we extend f ′ : K → R to a continuous function ϕ : R → R and consider
g(x) = f(x) − ∫ x

0
ϕ(t)dt. Then g ∈ C1(K) satisfies g′ = 0 and g ∈ C1(R|K)

implies f ∈ C1(R|K).
Let us thus fix f ∈ C1(K) with f ′ = 0. We have to show Whitney’s

condition stated above at any non-isolated point ξ which, for notational con-
venience, we may assume to be ξ = 0. We fix c > max{σ(0), 1} and ε ∈ (0, 1).
There is thus δ > 0 such that, because of the differentiability at ξ = 0 with
f ′(0) = 0, we have ∣∣∣∣f(x) − f(0)

x − 0

∣∣∣∣ <
ε

2c
(7)

for all x ∈ K with |x| < δ and, because of σδ(ξ) < c for small enough δ,

sup{|y| : y ∈ G} ≤ c�(G)

for all gaps G ⊆ (−δ, δ). For x, y ∈ K ∩ (−δ, δ) we will show∣∣∣∣f(x) − f(y)
x − y

∣∣∣∣ ≤ ε.

If x, y are in the same component of K this quotient is 0 because f is locally
constant. Moreover, if x, y are on different sides of 0, the quotient is bounded
by ε because of (7) and c ≥ 1. It remains to consider the case 0 < x < y. Then
there is a gap G between x and y and, since f is locally constant, we may
decrease y so that y ∈ ∂K without changing f(y) which thus increases the
difference quotient we have to estimate. This implies that y is the endpoint of
gap G = (a, y) with a ≥ x which implies

|y − x| ≥ |y − a| = �(G) ≥ y/c ≥ x/c.

Therefore, ∣∣∣∣f(x) − f(y)
x − y

∣∣∣∣ ≤
∣∣∣∣f(x) − f(0)

x − y

∣∣∣∣ +
∣∣∣∣f(y) − f(0)

x − y

∣∣∣∣
≤ c

∣∣∣∣f(x) − f(0)
x − 0

∣∣∣∣ + c

∣∣∣∣f(y) − f(0)
y − 0

∣∣∣∣ ≤ ε.

�
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Université de Liège
12 allée de la Découverte, Bât. B37
B-4000 Liège
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