[en] During the last few years, a great research effort has been devoted to the synthesis of aliphatic polyesters, e.g. poly(ε-caprolactone) and polylactides. Indeed, their remarkable properties of biodegradability and biocompatibility pave the way to many new applications in the biomedical field and as substitutes for non degradable polymers. In order to tailor the polyester properties, the grafting of functional groups along the polymer backbone is highly desirable. For the last few years, CERM has reported on the synthesis and the (co)polymerization of novel ε-caprolactones γ-substituted by various functional groups, e.g., ketal, ketone, olefin, protected alcohol and carboxylic acid. Nevertheless, the grafting of a specific functional group onto the aliphatic polyester backbone requires the synthesis of the parent substituted ε-caprolactone. There is accordingly a need for a strategy that would use a unique substituted ε-caprolactone, followed by derivatization by well-established reactions, so making available a wide range of pendent functional groups, polymeric or not. The derivatization reactions have however to be quantitative under mild conditions to prevent the aliphatic polyester from degrading. Moreover, these reactions must be compatible with the functional groups of interest, e.g., hydroxyl and carboxylic acid, in order to avoid the use of cumbersome protection/deprotection reactions. This communication aims at reporting that a-chloro-e caprolactone (αCLεCL) can be easily copolymerized with εCL into poly(αCLεCL-co-εCL) copolymers, which are precursors for various aliphatic polyesters, by using either Atom Transfer Radical Addition (ATRA) or Click reactions. The number of steps is limited whatever the "Click" or the "ATRA" strategy under consideration. In both cases, mild conditions have been found, such that degradation is minimized. Pendent hydroxyl, carboxylic acid and epoxide groups have been attached without using any protection/deprotection reaction. This strategy has been implemented for the synthesis of amphiphilic poly(εCL-g-ethylene oxide) graft copolymers, that have been used to prepare poly(D,L-lactide) nanoparticles for drug delivery applications.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Lecomte, Philippe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Riva, Raphaël ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Schmeits, Stephanie ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de rech. sur les macromolécules (CERM)
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Synthesis of new substituted poly(ε-caprolactone)s by comination of ring-opening polymerization, atom transfer radical addition and click reaction
Publication date :
19 May 2005
Event name :
Belgian Polymer Group (BPG) annual meeting 2005
Event organizer :
S. Demoustier, A.-S. Duwez, J.-F. Gohy, A. Jonas, B. Nysten (Université catholique de Louvain, UCL)
Event place :
La Roche en Ardenne, Belgium
Event date :
19/05/2005 - 20/05/2005
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.