[en] Intensive efforts are needed to find an alternative to replace Li-ion batteries. Among the potential candidates, K-ions batteries (KIBs) have received a lot of interest thanks to the low reduction potential and low cost of potassium due to the high abundance and broad distribution of potassium sources. In this regard, the development of high performance cathode materials has raised some challenges. Phosphate-based materials are considered as the most promising cathode materials for KIBs owing to their high structural stability upon cycling, high ionic conductivity and high insertion potential. Here, K3V(PO4)2 (KVP) and K3V(PO4)2/C composites are reported as new cathode materials for KIBs with a high theoretical capacity (150 mAh.g−1) and a high working potential (3.5–4 V). The pristine KVP and KVP/C composite materials are obtained by spray-drying process. The influence of grinding process on the structural, morphological and the electrochemical properties is investigated. The composite with carbon nanotubes (KVP/20CNT) demonstrates the best reversible capacity of 101 mAh.g−1 at C/40 using 0.8 M KPF6 in PC +10 wt% FEC as electrolyte. Different characterization techniques are combined to investigate the structural and morphological properties of the materials such as XRD, SEM, TEM and Laser granulometry.
Disciplines :
Chemistry
Author, co-author :
Bodart, Jérôme ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., Research development on sodium-ion batteries. Chem. Rev. 114 (2014), 11636–11682, 10.1021/cr500192f.
Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S., Towards K-ion and Na-ion batteries as “beyond Li-ion. Chem. Rec. 18 (2018), 459–479, 10.1002/tcr.201700057.
Wu, X., Leonard, D.P., Ji, X., Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem. Mater. 29 (2017), 5031–5042, 10.1021/acs.chemmater.7b01764.
Kim, H., Kim, J.C., Bianchini, M., Seo, D.H., Rodriguez-Garcia, J., Ceder, G., Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8 (2018), 1–19, 10.1002/aenm.201702384.
Komaba, S., Hasegawa, T., Dahbi, M., Kubota, K., Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60 (2015), 172–175, 10.1016/j.elecom.2015.09.002.
Bie, X., Kubota, K., Hosaka, T., Chihara, K., Komaba, S., A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A. 5 (2017), 4325–4330, 10.1039/c7ta00220c.
Chen, Y., Luo, W., Carter, M., Zhou, L., Dai, J., Fu, K., Lacey, S., Li, T., Wan, J., Han, X., Bao, Y., Hu, L., Organic electrode for non-aqueous potassium-ion batteries. Nanomater. Energy 18 (2015), 205–211, 10.1016/j.nanoen.2015.10.015.
Hironaka, Y., Kubota, K., Komaba, S., P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 53 (2017), 3693–3696, 10.1039/c7cc00806f.
Huang, B., Shao, Y., Liu, Y., Lu, Z., Lu, X., Liao, S., Improving potassium-ion batteries by optimizing the composition of prussian blue cathode. ACS Appl. Energy Mater. 2 (2019), 6528–6535, 10.1021/acsaem.9b01097.
He, G., Nazar, L.F., Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett 2 (2017), 1122–1127, 10.1021/acsenergylett.7b00179.
Wang, X., Xu, X., Niu, C., Meng, J., Huang, M., Liu, X., Liu, Z., Mai, L., Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 17 (2017), 544–550, 10.1021/acs.nanolett.6b04611.
Jungers, T., Mahmoud, A., Malherbe, C., Boschini, F., Vertruyen, B., Sodium iron sulfate alluaudite solid solution for Na-ion batteries: moving towards stoichiometric Na2Fe2(SO4)3. J. Mater. Chem. A. 7 (2019), 8226–8233, 10.1039/c9ta00116f.
Eshraghi, N., Caes, S., Mahmoud, A., Cloots, R., Vertruyen, B., Boschini, F., Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles. Electrochim. Acta 228 (2017), 319–324, 10.1016/j.electacta.2017.01.026.
Brisbois, M., Caes, S., Sougrati, M.T., Vertruyen, B., Schrijnemakers, A., Cloots, R., Eshraghi, N., Hermann, R.P., Mahmoud, A., Boschini, F., Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: operando Mössbauer study of spray-dried composites. Sol. Energy Mater. Sol. Cells 148 (2016), 67–72, 10.1016/j.solmat.2015.09.005.
Mahmoud, A., Caes, S., Brisbois, M., Hermann, R.P., Berardo, L., Schrijnemakers, A., Malherbe, C., Eppe, G., Cloots, R., Vertruyen, B., Boschini, F., Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J. Solid State Electrochem., 2017, 10.1007/s10008-017-3717-x.
Mathew, V., Kim, S., Kang, J., Gim, J., Song, J., Baboo, J.P., Park, W., Ahn, D., Han, J., Gu, L., Wang, Y., Hu, Y.S., Sun, Y.K., Kim, J., Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Mater., 6, 2014, 10.1038/am.2014.98.
Senthilkumar, B., Selvan, R.K., Barpanda, P., Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3, Electrochem. Commun. Now., 110, 2020, 106617, 10.1016/j.elecom.2019.106617.
Liao, J., Hu, Q., Mu, J., He, X., Wang, S., Chen, C., A vanadium-based metal-organic phosphate framework material K 2 [(VO) 2 (HPO 4 ) 2 (C 2 O 4 )] as a cathode for potassium-ion batteries. Chem. Commun. 55 (2019), 659–662, 10.1039/c8cc08734b.
Zheng, S., Cheng, S., Xiao, S., Hu, L., Chen, Z., Huang, B., Liu, Q., Yang, J., Chen, Q., Partial replacement of K by Rb to improve electrochemical performance of K3V2(PO4)3 cathode material for potassium-ion batteries. J. Alloys Compd., 815, 2020, 152379, 10.1016/j.jallcom.2019.152379.
Lin, X., Huang, J., Tan, H., Huang, J., Zhang, B., K3V2(PO4)2F3as a robust cathode for potassium-ion batteries. Energy Storage Mater 16 (2019), 97–101, 10.1016/j.ensm.2018.04.026.
Zhang, L., Zhang, B., Wang, C., Dou, Y., Zhang, Q., Liu, Y., Gao, H., Al-Mamun, M., Pang, W.K., Guo, Z., Dou, S.X., Liu, H.K., Constructing the best symmetric full K-ion battery with the NASICON-type K 3 V 2 (PO 4 ) 3. Nanomater. Energy 60 (2019), 432–439, 10.1016/j.nanoen.2019.03.085.
Hosaka, T., Shimamura, T., Kubota, K., Komaba, S., Polyanionic compounds for potassium-ion batteries. Chem. Rec. 19 (2019), 735–745, 10.1002/tcr.201800143.
Lander, L., Rousse, G., Abakumov, A.M., Sougrati, M., Van Tendeloo, G., Tarascon, J.M., Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph. J. Mater. Chem. A. 3 (2015), 19754–19764, 10.1039/c5ta05548b.
Recham, N., Rousse, G., Sougrati, M.T., Chotard, J.N., Frayret, C., Mariyappan, S., Melot, B.C., Jumas, J.C., Tarascon, J.M., Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem. Mater. 24 (2012), 4363–4370, 10.1021/cm302428w.
Park, W.B., Han, S.C., Park, C., Hong, S.U., Han, U., Singh, S.P., Jung, Y.H., Ahn, D., Sohn, K.S., Pyo, M., KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions. Adv. Energy Mater. 8 (2018), 1–12, 10.1002/aenm.201703099.
Katorova, N.S., Fedotov, S.S., Rupasov, D.P., Luchinin, N.D., Delattre, B., Chiang, Y.M., Abakumov, A.M., Stevenson, K.J., Effect of concentrated diglyme-based electrolytes on the electrochemical performance of potassium-ion batteries. ACS Appl. Energy Mater. 2 (2019), 6051–6059, 10.1021/acsaem.9b01173.
Chihara, K., Katogi, A., Kubota, K., Komaba, S., KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53 (2017), 5208–5211, 10.1039/c6cc10280h.
Fedotov, S.S., Khasanova, N.R., Samarin, A.S., Drozhzhin, O.A., Batuk, D., Karakulina, O.M., Hadermann, J., Abakumov, A.M., Antipov, E.V., AVPO4F (A = Li, K): a 4 v cathode material for high-power rechargeable batteries. Chem. Mater. 28 (2016), 411–415, 10.1021/acs.chemmater.5b04065.
Goubard-Bretesché, N., Kemnitz, E., Pinna, N., A general low-temperature synthesis route to polyanionic vanadium phosphate fluoride cathode materials: AVPO 4 F (A = Li, Na, K) and Na 3 V 2 (PO 4 ) 2 F 3. Mater. Chem. Front. 3 (2019), 2164–2174, 10.1039/c9qm00325h.
Kim, H., Seo, D.H., Bianchini, M., Clément, R.J., Kim, H., Kim, J.C., Tian, Y., Shi, T., Yoon, W.S., Ceder, G., A new strategy for high-voltage cathodes for K-ion batteries: stoichiometric KVPO4F. Adv. Energy Mater. 8 (2018), 1–12, 10.1002/aenm.201801591.
Nikitina, V.A., Kuzovchikov, S.M., Fedotov, S.S., Khasanova, N.R., Abakumov, A.M., Antipov, E.V., Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery. Electrochim. Acta 258 (2017), 814–824, 10.1016/j.electacta.2017.11.131.
Benhamada, L., Grandin, A., Borel, M.M., Leclaire, A., Raveau, B., A new vanadium III potassium phosphate with a cage structure: K6V2P4O16. J. Solid State Chem. 91 (1991), 264–270, 10.1016/0022-4596(91)90080-2.
Wang, X., Niu, C., Meng, J., Hu, P., Xu, X., Wei, X., Zhou, L., Zhao, K., Luo, W., Yan, M., Mai, L., Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 5 (2015), 1–8, 10.1002/aenm.201500716.
Cheary, R.W., Coelho, A., Fundamental parameters approach to x-ray line-profile fitting. J. Appl. Crystallogr. 25 (1992), 109–121, 10.1107/S0021889891010804.
Bernard, A., Boukamp, A package for impedance/admittance data analysis. Solid State Ionics 18&19 (1986), 136–140, 10.1017/CBO9781107415324.004.
Mahmoud, A., Saadoune, I., Difi, S., Sougrati, M.T., Lippens, P.E., Amarilla, J.M., Study of the structural and thermal stability of Li0.3Co 2/3Ni1/6Mn1/6O2. Electrochim. Acta 135 (2014), 536–542, 10.1016/j.electacta.2014.05.058.
Viswanath, R.S., Miller, P.J., High temperature phase transition in NH4H2PO4. Solid State Commun. 32 (1979), 703–706, 10.1016/0038-1098(79)90733-6.
Marcilla, A., Gómez-Siurana, A., Beltrán, M., Martínez-Castellanos, I., Blasco, I., Berenguer, D., TGA-FTIR study of the pyrolysis of sodium citrate and its effect on the pyrolysis of tobacco and tobacco/SBA-15 mixtures under N2 and air atmospheres. J. Sci. Food Agric. 98 (2018), 5916–5931, 10.1002/jsfa.9121.
Kavinkumar, T., Manivannan, S., Synthesis, characterization and gas sensing properties of graphene oxide-multiwalled carbon nanotube composite. J. Mater. Sci. Technol. 32 (2016), 626–632, 10.1016/j.jmst.2016.03.017.
Huang, H.H., De Silva, K.K.H., Kumara, G.R.A., Yoshimura, M., Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8 (2018), 2–10, 10.1038/s41598-018-25194-1.
Qiao, X., Liao, S., You, C., Chen, R., Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 5 (2015), 981–991, 10.3390/catal5020981.
Karegeya, C., Mahmoud, A., Cloots, R., Vertruyen, B., Boschini, F., Hydrothermal synthesis in presence of carbon black: particle-size reduction of iron hydroxyl phosphate hydrate for Li-ion battery. Electrochim. Acta 250 (2017), 49–58, 10.1016/j.electacta.2017.08.006.
Mahmoud, A., Caes, S., Brisbois, M., Hermann, R.P., Berardo, L., Schrijnemakers, A., Malherbe, C., Eppe, G., Cloots, R., Vertruyen, B., Boschini, F., Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J. Solid State Electrochem. 22 (2018), 103–112, 10.1007/s10008-017-3717-x.
Seydel, P., Blömer, J., Bertling, J., Modeling particle formation at spray drying using population balances. Dry. Technol. 24 (2006), 137–146, 10.1080/07373930600558912.
Karegeya, C., Mahmoud, A., Cloots, R., Vertruyen, B., Boschini, F., Hydrothermal synthesis in presence of carbon black: particle-size reduction of iron hydroxyl phosphate hydrate for Li-ion battery. Electrochim. Acta 250 (2017), 49–58, 10.1016/j.electacta.2017.08.006.
Mahmoud, A., Chamas, M., Lippens, P.E., Electrochemical impedance study of the solid electrolyte interphase in MnSn2 based anode for Li-ion batteries. Electrochim. Acta 184 (2015), 387–391, 10.1016/j.electacta.2015.10.078.
Zhu, C., Wu, C., Chen, C., Kopold, P., Van Aken, P.A., Maier, J., A high power − high energy Na 3 V 2 ( PO 4 ) 2 F 3 sodium Cathode : investigation of transport parameters. Rational Design and Realization 2 (2017), 1–14, 10.1021/acs.chemmater.7b00927.
Wang, K., Cai, R., Yuan, T., Yu, X., Ran, R., Shao, Z., Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta 54 (2009), 2861–2868, 10.1016/j.electacta.2008.11.012.
Liu, W.L., Tu, J.P., Qiao, Y.Q., Zhou, J.P., Shi, S.J., Wang, X.L., Gu, C.D., Optimized performances of core-shell structured LiFePO4/C nanocomposite. J. Power Sources 196 (2011), 7728–7735, 10.1016/j.jpowsour.2011.05.046.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.