[en] Cities are experiencing increased pressure on social, economic, and environmental sectors due to the rapid urbanisation and increasing risk owing to climate change affecting the urban environment. Solutions such as green roofs are often discussed in the context of smart and sustainable cities as they present a multi-functional and solution-oriented approach to address these challenges.
Green roofs become extremely relevant in the context of highly urbanised and compact cities where impervious surfaces are abundant. Therefore, in this paper, we analyse the potential of green roofs at a city scale with the help of parameters such as area and slope of the roof and structure of the building. We also identify the priority zones based on environmental and socio-economic parameters. The study is carried out in the city of Liege, Belgium. The results suggest that around 20% (350 hectares) of the total buildings in the city have the potential for developing green roofs. Moreover, the potential of green roofs is quite significant in terms of roof area in the priority zone. Due to significant socio-economic deprivation in high priority zones, implementation of green roofs might not be affordable. Buildings with larger roof sizes are mostly owned by ompanies or commercial establishments, thus, making larger roofs more relevant for retrofitting green roof. Thus, our approach can act as a preliminary decision-making tool for urban planners to analyse the potential of green roofs and prioritize them in deprived areas.
Research Center/Unit :
Local environmental and management analysis
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Joshi, Mitali ; Université de Liège - ULiège > Doct. art bâtir & urba. (FSA -paysage)
Selmi, Wissal ; Université de Liège - ULiège > Département ArGEnCo > Urbanisme et aménagement du territoire
Binard, Marc ; Université de Liège - ULiège > Dép. de Géographie : Plateforme "GITAN"
Nys, Gilles-Antoine ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Teller, Jacques ; Université de Liège - ULiège > Département ArGEnCo > Urbanisme et aménagement du territoire
Language :
English
Title :
Potential for urban greening with green roofs: A way towards smart cities
Publication date :
2020
Event name :
5th International conference on smart data and smart cities
Event organizer :
Urban Data Management Society (UDMS) International Society for Photogrammetry and Remote Sensing (ISPRS) Mediterranean Institute for Risk, Environment and Sustainable Development (IMREDD) of Université Côte d’Azur UMR 7300 ESPACE Laboratory of Geography and Urban Planning at the French National Centre for Scientific Research (CNRS
Event place :
Nice, France
Event date :
from 30-09-2020 to 02-10-2020
Audience :
International
Journal title :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Ballard, D. H. (1987). Generalising the Hough transform to detect arbitrary shapes. In Readings in Computer Vision (pp. 714-725). https://doi.org/10.1016/b978-0-08-051581-6.50069-6
Berhe, R. T., Martinez, J., & Verplanke, J. (2014). Adaptation and Dissonance in Quality of Life: A Case Study in Mekelle, Ethiopia. Soc. Indic. Res., 118(2), 535-554.
Bianchet, B., Descamps, J., Ruelle, C., Wilmotte, P.-F., Bastin, F., Mercenier, C., & Claeys, D. (2016). Localisations prioritaires en mati?re de dynamisation et de r?novation des quartiers urbains existants. Namur.
Biljecki, F., & Dehbi, Y. (2019). Raise the roof: Towards generating LOD2 models without aerial surveys using machine learning. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 4(4/W8), 27-34.
Bouzguenda, I., Alalouch, C., & Fava, N. (2019, October 1). Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustain. Cities Soc., Vol. 50, p. 101627.
Braaker, S., Ghazoul, J., Obrist, M. K., & Moretti, M. (2014). Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology, 95(4), 1010-1021.
Cao, R., Zhang, Y., Liu, X., & Zhao, Z. (2017). 3D building roof reconstruction from airborne LiDAR point clouds: A framework based on a spatial database. Int. J. Geogr. Inf. Sci., 31(7), 1359-1380.
Dizdaroglu, D., Yigitcanlar, T., & Dawes, L. (2012). A micro-level indexing model for assessing urban ecosystem sustainability. Smart Sustain. Built Environ., 1(3), 291-315.
Dorst, H., van der Jagt, A., Raven, R., & Runhaar, H. (2019, August 1). Urban greening through nature-based solutions ? Key characteristics of an emerging concept. Sustain. Cities Soc., Vol. 49, p. 101620. https://doi.org/10.1016/j.scs.2019.101620
Guzm?n-S?nchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Build. Environ., 141, 182-192.
Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and flooding: A guide to integrated urban flood risk management for the 21st century. Washington, DC, US: The World Bank
Joimel, S., Grard, B., Auclerc, A., Hedde, M., Le Doar?, N., Salmon, S., & Chenu, C. (2018). Are Collembola ?flying? onto green roofs? Ecol. Eng., 111, 117-124.
Karteris, M., Theodoridou, I., Mallinis, G., Tsiros, E., & Karteris, A. (2016). Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renew. Sustain. Energy Rev., 58, 510-525.
Langemeyer, J., Wedgwood, D., McPhearson, T., Bar?, F., Madsen, A. L., & Barton, D. N. (2020). Creating urban green infrastructure where it is needed ? A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ., 707, 135487.
Mahdiyar, A., Tabatabaee, S., Abdullah, A., & Marto, A. (2018). Identifying and assessing the critical criteria affecting decision-making for green roof type selection. Sustain. Cities Soc., 39, 772-783. https://doi.org/10.1016/j.scs.2018.03.007
Mallinis, G., Karteris, M., Theodoridou, I., Tsioukas, V., & Karteris, M. (2014). Development of a nationwide approach for large scale estimation of green roof retrofitting areas and roof-Top solar energy potential using VHR natural colour orthoimagery and DSM data over Thessaloniki, Greece. Remote Sens. Lett., 5(6), 548-557.
Mesim?ki, M., Hauru, K., Kotze, D. J., & Lehv?virta, S. (2017). Neo-spaces for urban livability? Urbanites? versatile mental images of green roofs in the Helsinki metropolitan area, Finland. Land Use Policy, 61, 587-600.
Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: Shrubs versus herbaceous plants. Urban Ecosyst., 15(3), 697-708. https://doi.org/10.1007/s11252-011-0220-5
Oehrlein, J., Niedermann, B., & Haunert, J. H. (2019). Analyzing the Supply and Detecting Spatial Patterns of Urban Green Spaces via Optimization. J. Photogramm. Remote Sens. Geoinf. Sci., 87(4), 137-158.
Peng, L. L. H., & Jim, C. Y. (2015). Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban For. Urban Green., 14(3), 554-561. https://doi.org/10.1016/j.ufug.2015.05.006
Rice, J., & Martin, N. (2020). Smart infrastructure technologies: Crowdsourcing future development and benefits for Australian communities. Technol. Forecast. Soc. Change, 153, 119256.
Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., & Jung, J. (2014). Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens., 93, 256-271.
Santos, T., Tened?rio, J. A., & Gon?alves, J. A. (2016). Quantifying the city?s green area potential gain using remote sensing data. Sustain., 8(12). https://doi.org/10.3390/su8121247
Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum, 26(2), 214-226. https://doi.org/10.1111/j.1467-8659.2007.01016.x
Shafique, M., Kim, R., & Rafiq, M. (2018, July 1). Green roof benefits, opportunities and challenges ? A review. Renew. Sustain. Energy Rev., Vol. 90, pp. 757-773.
Sharma, A., Conry, P., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., & Chen, F. (2016). Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model. Environ. Res. Lett., 11(6), 064004.
Sharma, A., Woodruff, S., Budhathoki, M., Hamlet, A. F., Chen, F., & Fernando, H. J. S. (2018). Role of green roofs in reducing heat stress in vulnerable urban communities -A multidisciplinary approach. Environ. Res. Lett., 13(9).
Silva, C. M., Flores-Colen, I., & Antunes, M. (2017). Step-by-step approach to ranking green roof retrofit potential in urban areas: A case study of Lisbon, Portugal. Urban For. Urban Green., 25, 120-129.
Singh, M. K., Mahapatra, S., & Teller, J. (2013). An analysis on energy efficiency initiatives in the building stock of Liege, Belgium. Energy Policy, 62, 729-741.
Sodiq, A., Baloch, A. A. B., Khan, S. A., Sezer, N., Mahmoud, S., Jama, M., & Abdelaal, A. (2019, August 1). Towards modern sustainable cities: Review of sustainability principles and trends. J. Clean. Prod., Vol. 227, pp. 972-1001.
Specht, K., Weith, T., Swoboda, K., & Siebert, R. (2016). Socially acceptable urban agriculture businesses. Agron. Sustain. Dev., 36(1), 1-14.
Stephenne, N., Beaumont, B., Hallot, E., Wolff, E., Poelmans, L., & Baltus, C. (2016). Sustainable and smart city planning using spatial data in Wallonia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., IV-4/W1, 3-10.
Su, W., Gu, C., & Yang, G. (2010). Assessing the Impact of Land Use/Land Cover on Urban Heat Island Pattern in Nanjing City, China. J. Urban Plan. Dev., 136(4), 365-372.
Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2007). Hough-Transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from LiDAR data. Proceedings of ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, 407-412.
Teot?nio, I., Silva, C. M., & Cruz, C. O. (2018). Eco-solutions for urban environments regeneration: The economic value of green roofs. J. Clean. Prod., 199, 121-135.
Tian, Y., & Jim, C. Y. (2012). Development potential of sky gardens in the compact city of Hong Kong. Urban For. Urban Green., 11(3), 223-233.
UN-Habitat. (2012). State of the world?s cities 2012/2013 : Prosperity of cities. Nairobi, Kenya:UN-Habitat
UN-Habitat. (2013). The State of European Cities in Transition 2013: Taking stock after 20 years of reform. Nairobi, Kenya:UN-Habitat
USGS. (2019). Landsat 8 (L8) Data Users Handbook. South Dakota, US: USGS
Wilkinson, S. J., & Reed, R. (2009). Green roof retrofit potential in the central business district. Prop. Manag., 27(5), 284-301. https://doi.org/10.1108/02637470910998456
Wu, Y., Zhang, W., Shen, J., Mo, Z., & Peng, Y. (2018). Smart city with Chinese characteristics against the background of big data: Idea, action and risk. J. Clean. Prod., 173, 60-66.
Xu, B., Jiang, W., Shan, J., Zhang, J., & Li, L. (2015). Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens., 8(1), 5. https://doi.org/10.3390/rs8010005
Yigitcanlar, T., Kamruzzaman, M., Foth, M., Sabatini-Marques, J., da Costa, E., & Ioppolo, G. (2019, February 1). Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc., Vol. 45, pp. 348-365.
Yigitcanlar, T., Sabatini-Marques, J., Lorenzi, C., Bernardinetti, N., Schreiner, T., Fachinelli, A., & Wittmann, T. (2018). Towards Smart Florian?polis: What Does It Take to Transform a Tourist Island into an Innovation Capital? Energies, 11(12), 3265.
Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ., 106(3), 375-386.