Article (Scientific journals)
Siting Renewable Power Generation Assets with Combinatorial Optimisation
Berger, Mathias; Radu, David-Constantin; Dubois, Antoine et al.
2021In Optimization Letters
Peer Reviewed verified by ORBi
 

Files


Full Text
berger_NRES.pdf
Author preprint (3.15 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
combinatorial optimisation; submodular maximisation; integer programming; renewable energy; asset siting; resource complementarity
Abstract :
[en] This paper studies the problem of siting renewable power generation assets using large amounts of climatological data while accounting for their spatiotemporal complementarity. The problem is cast as a combinatorial optimisation problem selecting a pre-specified number of sites so as to minimise the number of simultaneous low electricity production events that they experience relative to a pre-specified reference production level. It is shown that the resulting model is closely related to submodular optimisation and can be interpreted as generalising the well-known maximum coverage problem. Both deterministic and randomised algorithms are discussed, including greedy, local search and relaxation-based heuristics as well as combinations of these algorithms. The usefulness of the model and methods is illustrated by a realistic case study inspired by the problem of siting onshore wind power plants in Europe, resulting in instances featuring over ten thousand candidate locations and ten years of hourly-sampled meteorological data. The proposed solution methods are benchmarked against a state-of-the-art mixed-integer programming solver and several algorithms are found to consistently produce better solutions at a fraction of the computational cost. The physical nature of solutions provided by the model is also investigated, and all deployment patterns are found to be unable to supply a constant share of the electricity demand at all times. Finally, a cross-validation analysis shows that, except for an edge case, the model can successfully and reliably identify deployment patterns that perform well on previously unseen climatological data from historical data spanning a small number of weather years.
Disciplines :
Computer science
Energy
Author, co-author :
Berger, Mathias ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Radu, David-Constantin ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Dubois, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Pandzic, Hrvoje;  University of Zagreb > Faculty of Electrical Engineering and Computing
Dvorkin, Yury;  New York University (NYU) > Tandon School of Engineering
Louveaux, Quentin  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Language :
English
Title :
Siting Renewable Power Generation Assets with Combinatorial Optimisation
Publication date :
August 2021
Journal title :
Optimization Letters
ISSN :
1862-4472
eISSN :
1862-4480
Publisher :
Springer, Germany
Peer reviewed :
Peer Reviewed verified by ORBi
Additional URL :
Name of the research project :
REMI
Funders :
Federal Government of Belgium
Available on ORBi :
since 22 September 2020

Statistics


Number of views
573 (94 by ULiège)
Number of downloads
574 (43 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
3
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi