
Noname manuscript No.
(will be inserted by the editor)

Siting Renewable Power Generation Assets with
Combinatorial Optimisation

Mathias Berger · David Radu · Antoine
Dubois · Hrvoje Pandžić† · Yury
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Abstract This paper studies the problem of siting renewable power gener-
ation assets using large amounts of climatological data while accounting for
their spatiotemporal complementarity. The problem is cast as a combinatorial
optimisation problem selecting a pre-specified number of sites so as to min-
imise the number of simultaneous low electricity production events that they
experience relative to a pre-specified reference production level. It is shown
that the resulting model is closely related to submodular optimisation and
can be interpreted as generalising the well-known maximum coverage prob-
lem. Both deterministic and randomised algorithms are discussed, including
greedy, local search and relaxation-based heuristics as well as combinations of
these algorithms. The usefulness of the model and methods is illustrated by
a realistic case study inspired by the problem of siting onshore wind power
plants in Europe, resulting in instances featuring over ten thousand candidate
locations and ten years of hourly-sampled meteorological data. The proposed
solution methods are benchmarked against a state-of-the-art mixed-integer
programming solver and several algorithms are found to consistently produce
better solutions at a fraction of the computational cost. The physical nature
of solutions provided by the model is also investigated, and all deployment
patterns are found to be unable to supply a constant share of the electricity
demand at all times. Finally, a cross-validation analysis shows that, except
for an edge case, the model can successfully and reliably identify deployment
patterns that perform well on previously unseen climatological data from his-
torical data spanning a small number of weather years.
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1 Introduction

In recent years, the large-scale deployment of technologies harnessing renew-
able energy sources (RES) for electricity production has been a mainstay of
climate and decarbonisation policies. However, widely-available RES (e.g., so-
lar irradiance and wind) are inherently variable on time scales ranging from
minutes to years [22], which greatly complicates power system operation and
planning procedures. Several solutions have been proposed to alleviate this
issue, such as the widespread deployment of energy storage systems in power
systems [32,65] or the implementation of demand response programs [55]. Al-
ternatively, since the distribution of RES is heterogeneous in space and time,
it has been suggested that carefully selecting renewable power generation sites
to exploit this diversity could at least partly alleviate variability issues and re-
duce the residual demand (i.e., the part of the electricity demand that cannot
be supplied by renewable power plants) [48,33].

The concept of complementarity of renewable resources, which formalises
this idea, has received much attention of late [41]. In particular, a number
of methods have been applied to evaluate resource complementarity, ranging
from correlation coefficients [47,56] and frequency-domain analyses [3,43] to
principal component analysis [46,71] and custom scalar indicators [59,66]. In
addition, a novel framework [8] that is particularly well-suited for exploiting
the vast amounts of high-resolution climatological data unlocked by sophisti-
cated reanalysis models [31,24] has recently been proposed to carry out highly
granular asset siting analyses. Roughly speaking, in this framework, locations
are considered complementary if they rarely experience periods of simultane-
ous low electricity production relative to a pre-specified reference production
level (that may be proportional to the electricity demand), and the result-
ing complementarity criterion is directly amenable to optimisation. Hence, it
can be used to provide a systematic and efficient way of selecting deployment
patterns while accounting for their spatiotemporal complementarity.

Building upon these ideas, in this paper, the renewable power generation
asset siting problem is cast as a combinatorial optimisation problem selecting
a pre-specified number of sites so as to minimise the number of simultaneous
low-production events that they experience relative to a pre-specified reference
production level. Model properties are carefully analysed, and a formal con-
nection with submodular optimisation and coverage problems is established.
Both deterministic and randomised algorithms are discussed, including greedy,
local search and relaxation-based heuristics. The usefulness of the model and
methods is illustrated by a realistic case study inspired by the problem of sit-
ing onshore wind power plants in Europe, resulting in instances featuring over
ten thousand candidate sites and ten years of hourly-sampled meteorological
data. The proposed solution methods are benchmarked against a state-of-
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the-art mixed-integer programming (MIP) solver, and the physical nature of
solutions provided by the model is also analysed. Finally, a cross-validation
analysis is performed in order to evaluate whether the model and algorithms
can successfully identify deployment patterns that perform well on previously
unseen climatological data from historical data spanning a small number of
weather years.

This paper is structured as follows. Section 2 reviews the relevant literature.
In Section 3, the framework used to evaluate spatiotemporal complementarity
is presented, the optimisation model is introduced, its properties are anal-
ysed, and solution methods are discussed. Section 4 presents the experimental
set-up, benchmarks solution methods on a realistic test case and provides a
detailed account of model capabilities. Finally, Section 5 concludes the paper
and discusses future work directions.

2 Related Works

This section reviews optimisation models used in the context of power system
planning and renewable asset siting as well as relevant algorithmic results.

On the one hand, centralised planning and game-theoretical models that
optimise purely economic criteria such as revenue or total system cost have
been proposed. For instance, the strategic investment in wind power genera-
tion assets [6], the co-optimisation of power generation and transmission assets
[50,37] as well as the co-optimisation of merchant storage and power trans-
mission assets [21] have all been studied. In theory, such models are capable of
evaluating the economic implications of strategic renewable power generation
asset siting and resource complementarity for power systems. However, owing
to computational limitations, these models usually have fairly low spatial and
temporal resolutions, which makes it difficult to accurately capture correla-
tions between variable renewable resources and properly site renewable power
generation assets.

On the other hand, models such as the one presented in this paper put
more emphasis on the representation of renewable resources at the expense
of other modelling features such as network physics and constraints. These
models typically have much higher spatial and temporal resolutions and use
non-monetary objectives such as the residual demand. For example, Mussel-
man et al. [51] proposed two mixed-integer linear programming models that
seek to site wind power plants so as to balance two competing objectives.
More precisely, the first model seeks to simultaneously minimise the average
residual demand and the average step-wise power output variability, while the
second formulation attempts to simultaneously minimise the average residual
demand and the maximum increase in residual demand over all sets of suc-
cessive time periods of pre-specified length. Greedy heuristics are proposed to
solve the problems approximately. In the same vein, Wu et al. [69] proposed a
linear optimisation model that sites and sizes wind power plants so as to min-
imise the maximum residual demand in different regions of Southern Africa.
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It is unclear whether the proposed model has continuous or integer variables.
Zappa et al. [70] took a similar approach to wind and solar photovoltaic power
generation asset deployment in Europe and formulated a linear least-squares
model minimising the average residual demand. Notably, a full matrix storing
capacity factors appears in the constraints or in the objective in all of these
models [51,69,70], which limits their scalability.

From an algorithmic standpoint, the combinatorial optimisation problem
studied in this paper is closely related to submodular maximisation [53] and
coverage problems [40,19,38,7]. A number of negative results are known for
these two classes of problems. More specifically, the problem of maximising
a monotone submodular set function subject to a cardinality constraint is
known to be NP-hard [17]. Thus, unless P = NP, no exact polynomial-time al-
gorithm exists. Alternatives include approximation algorithms, which typically
have both polynomial time complexity and worst-case performance guarantees.
However, Nemhauser and Wolsey [52] showed that approximation algorithms
for monotone submodular maximisation over the uniform matroid (which gen-
eralises the cardinality constraint) may not achieve an approximation ratio
better than 1 − 1/e (where e is the base of the natural logarithm) with a
polynomial number of queries to the objective function. In other words, in the
value oracle model, the problem is also hard to approximate. Inapproximabil-
ity results are also known for several coverage problems, including maximum
coverage [38] (which, given a collection of subsets of a ground set, consists in
selecting k subsets so as to maximise the cardinality of their union), maximum
`-multi-coverage [7] (which can be viewed as a relaxed version of maximum
coverage where an element can be counted up to ` times and is also a par-
ticular case of submodular maximisation subject to a cardinality constraint),
set cover [40,16] and set multicover [19,57,58] (which, given a collection of
subsets of a ground set, consist in selecting the smallest number of subsets so
as to guarantee that each element of the ground set is covered at least once or
multiple times, respectively). More precisely, unless P = NP, it is known that
no polynomial-time algorithm with an approximation ratio better than 1−1/e
exists for the maximum coverage problem [25]. In addition, under the unique
games conjecture [42], the best approximation ratio that any polynomial-time
algorithm can achieve for maximum `-multi-coverage is 1− ``e−`/`! [7]. Feige
[25] also showed that set cover cannot be approximated efficiently below a
threshold of (1− o(1)) lnn (where n is the number of elements to be covered),
unless NP has slightly superpolynomial-time algorithms. Finally, set multi-
cover is essentially as hard as set cover [57].

Three main classes of approximation algorithms have been studied for sub-
modular maximisation and coverage problems, namely greedy [53,44,4,49],
local search [26,27] and (multi-)linear relaxation-based [12,14] algorithms. Al-
though several algorithms may have the same (tight) approximation ratio for a
given problem, their computational complexity may vary widely. In particular,
greedy algorithms often provide good approximation guarantees and have low
computational complexity. The classic greedy algorithm [53] requires O(nk)
function evaluations to achieve a constant approximation ratio of 1−1/e (both
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for monotone submodular maximisation subject to a cardinality constraint [53]
and maximum coverage [38]). In addition, the first linear-time algorithm for
monotone submodular maximisation subject to a cardinality constraint is a
variant of the classic greedy algorithm with randomised partial enumeration
that was introduced by Mirzasoleiman et al. [49]. Its complexity is O(n log 1

ε )
and an approximation ratio of 1− 1/e− ε is guaranteed in expectation for any
ε > 0. Greedy algorithms also achieve logarithmic approximation ratios for
both set cover [40,16] and set multicover [19,57]. Interestingly, for maximum
`-multi-coverage, the greedy algorithm does not have a tight approximation
ratio [7]. Instead, the best algorithm combines a linear programming relax-
ation with the pipage rounding scheme [2,7]. Finally, it is worth mentioning
that sophisticated heuristics lacking theoretical guarantees have also been used
to tackle coverage problems, such as the greedy randomized adaptive search
procedure (GRASP) of Resende [63].

3 Methods

This section presents the framework used to quantify the spatiotemporal com-
plementarity of candidate power generation sites, introduces the combinatorial
optimisation problem used for siting renewable power generation assets and
carefully analyses its properties. An integer programming formulation of this
problem is also discussed along with several solution methods.

3.1 Evaluating Spatiotemporal Complementarity

Recall that in the framework of [8], locations are considered complementary
if they rarely experience periods of simultaneous low electricity production
(compared with a pre-specified reference production level). A set function for-
malising this intuition and assigning a complementarity score to any set of
candidate sites is derived next.

Formally, a geographical region is represented by a finite set of locations
L, |L| = L, and a time series sl ∈ RT+ describing renewable resource data
(e.g., wind speed, solar irradiation) over a set of time periods T , |T | = T ,
is assumed to be available at each location l ∈ L. The instantaneous power
output of a given location l ∈ L is estimated using a suitable transfer function
hl : RT+ → RT+ and is represented by a time series ul = hl(sl). This transfer
function may be that of a single RES power generation technology (e.g., a wind
turbine or a solar photovoltaic module) or that of an entire power station (e.g.,
a wind farm or a photovoltaic power station).

Furthermore, a set of time windows W ⊆ 2T , |W| = W , is constructed
from the set of time periods T . More precisely, a time window w ∈ W can
be interpreted as a subset Tw ⊆ T of δ successive time periods, and all time
windows w ∈ W have the same length δ. Note that successive time windows
overlap and share exactly δ − 1 time periods, while the union of all time
windows covers the set of time periods.
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The electricity production level pwl of each candidate site l ∈ L is evalu-
ated over the duration of each time window w ∈ W using a prescribed measure
ql : RT+ ×W → R+, such that pwl = ql(ul,w). This measure may for instance
compute the average production level over each window w ∈ W. This would
essentially be equivalent to applying a moving average-based filter to the origi-
nal power production signal and result in a smoothed power output signal. The
degree of smoothing would be controlled by δ, which makes it possible to study
resource complementarity on different time scales. A local, time-dependent ref-
erence production level αwl ∈ R+ is also specified at each candidate site l ∈ L,
and may for instance be proportional to the electricity demand. A location
l ∈ L is considered productive enough over window w ∈ W if pwl ≥ αwl, and
location l is then said to cover window w.

In order to formalise the intuitive definition of resource complementarity
introduced earlier, a coverage parameter c ∈ N is specified, such that for any
subset of candidate locations L ⊆ L, a window w ∈ W is said to be c-covered
if at least c locations produce enough electricity over its duration. Let NL

w

denote the number of candidate sites l ∈ L covering window w ∈ W, and let
fc : 2L → N be a nonnegative set function associating its number of c-covered
time windows to any subset of locations L ⊆ L,

fc(L) = |{w ∈ W|NL
w ≥ c}|. (1)

Computing this function takes O(|L|W ) elementary (arithmetic and compari-
son) operations. In addition, dividing the number of c-covered windows fc(L)
by the total number of time windows W shows that this function can be in-
terpreted as quantifying the empirical probability of having sufficient levels of
electricity production across at least c locations simultaneously. A low value
of fc(L) therefore implies that simultaneous low electricity production events
occur often, which indicates poor complementarity between locations. In the
context of renewable power plant siting, the coverage parameter c can be inter-
preted as distributing power generation across sites while imposing an implicit
joint electricity production requirement.

3.2 Combinatorial Optimisation Model

The combinatorial optimisation problem proposed for siting renewable power
generation assets selects a pre-defined number of sites k ∈ N so as to maximise
the number of c-covered windows throughout the horizon considered, which
can be expressed as follows

max
L⊆L

fc(L) (2)

s.t. |L| = k.

It is worth analysing the properties of fc more closely in order to gain a
better understanding of the problem at hand. To this end, the concepts of
monotone and submodular set functions are formally introduced next.
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Definition 1 (Monotonicity) Let Z be a finite ground set and let g : 2Z → N
be a nonnegative set function. Then, g is said to be monotone (non-decreasing)
if and only if g(X) ≤ g(Y ) for every X ⊆ Y ⊆ Z.

Definition 2 (Submodularity) Let Z be a finite ground set and let g : 2Z → N
be a nonnegative set function. Then, g is said to be submodular if and only if
g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ), ∀X,Y ⊆ Z.

Putting these definitions to use yields the following results.

Proposition 1 Let L be a finite set of locations and let fc : 2L → N be the
set function defined in Eq. (1). Then, fc is monotone non-decreasing.

Proof Let us assume that ∃L′ ( L ⊆ L such that fc(L
′) > fc(L). This implies

that there exists at least one window w ∈ W that is c-covered by L′ but not
by L. However, since L′ is a proper subset of L, the number of locations in L
that cover any window must be at least equal to that of L′, which leads to a
contradiction. ut

Proposition 2 (Diminishing Returns) Let Z be a finite ground set and let
g : 2Z → N be a nonnegative set function. Then, g is submodular if and only
if g(X ∪ {z})− g(X) ≥ g(Y ∪ {z})− g(Y ), ∀X ⊆ Y ⊆ Z and z ∈ Z \ Y [53].

Proposition 3 Let L be a finite set of locations and let fc : 2L → N be the
set function defined in Eq. (1). Then, fc is submodular if c = 1. However, in
general, fc is not submodular if c > 1.

Proof Let L1 ⊆ L and L2 ⊆ L be two arbitrary subsets of locations. We
seek to show that fc satisfies Definition 2 if c = 1. Let N : 2L ×W → N be a
function that, to any subset L ⊆ L and window w ∈ W, associates the number
of locations in L that cover w. It is clear that the following identities hold,
∀w ∈ W,

N(L1,w) = N(L1 ∩ L2,w) + N(L1 \ L2,w),

N(L2,w) = N(L1 ∩ L2,w) + N(L2 \ L1,w),

N(L1 ∪ L2,w) = N(L1 ∩ L2,w) + N(L1 \ L2,w) + N(L2 \ L1,w).

In addition, let g : N→ {0, 1} be a function such that

g(k) =

{
1 if k ≥ 1
0 otherwise

.

Note that for c = 1, fc can be simply expressed as a sum of compositions of g
and N, hence

fc(L) =
∑
w∈W

g
(
N(L,w)

)
, ∀L ⊆ L.
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Substituting this expression in Definition 2 leads to∑
w∈W

g
(
N(L1,w)

)
+
∑
w∈W

g
(
N(L2,w)

)
≥
∑
w∈W

g
(
N(L1 ∪ L2,w)

)
+
∑
w∈W

g
(
N(L1 ∩ L2,w)

)
.

Thus, showing that the composition of g and N satisfies Definition 2 for any
window w ∈ W suffices for our purpose. For the sake of clarity, in the following,
N(L,w) will be written as N(L). Now, invoking the identities introduced above
yields

g
(
N(L1 ∩ L2) + N(L1 \ L2)

)
+ g
(
N(L1 ∩ L2) + N(L2 \ L1)

)
≥ g
(
N(L1 ∩ L2) + N(L1 \ L2) + N(L2 \ L1)

)
+ g
(
N(L1 ∩ L2)

)
.

A number of cases can be considered. If N(L1 ∩ L2) ≥ 1, the inequality is
always tight. By contrast, if N(L1 ∩ L2) = 0, the second term on the right-
hand side will be null. In this case, the inequality will be tight if N(L1\L2) = 0
or N(L2 \ L1) = 0, while the inequality will be strict if N(L1 \ L2) ≥ 1 and
N(L2 \ L1) ≥ 1. Since the inequality is satisfied in all cases, fc is submodular
if c = 1.

In order to show that fc is not submodular if c > 1, let us assume that
it is not uniformly equal to 0 over 2L. Then, ∃L ⊆ L that has a strictly
positive value fc(L) > 0. Note that |L| ≥ c, and it therefore has nontrivial
proper subsets. In particular, ∃L′ ( L nontrivial and ∃l ∈ L, l /∈ L′, such that
fc(L

′) = 0 and fc(L
′ ∪ {l}) > 0. In addition, ∃L′′ ( L′ (possibly empty) such

that fc(L
′′) = 0 and fc(L

′′ ∪ {l}) = 0. Taking X = L′′, Y = L′, z = l and
substituting them in the inequality of Proposition 2 shows that the diminishing
returns property of submodular functions is violated. ut

Based on the algorithmic literature surveyed in Section 2, these results
imply that problem (2) is both NP-hard and hard to approximate. An integer
programming formulation of problem (2) is discussed next.

3.3 Integer Programming Formulation

Let Dwl ∈ {0, 1} denote the entry of a binary matrix indicating whether lo-
cation l ∈ L covers window w ∈ W, such that Dwl = 1 if location l covers
window w and Dwl = 0 otherwise. Let xl ∈ {0, 1} be a binary variable in-
dicating whether location l ∈ L is selected for deployment, such that xl = 1
if location l is selected for deployment and xl = 0 otherwise. Recall that a
window w ∈ W is said to be c-covered if

∑L
l=1Dwlxl ≥ c. Let yw ∈ {0, 1} be

a binary variable indicating whether window w ∈ W is c-covered, such that
yw = 1 if window w is c-covered and yw = 0 otherwise.

Then, problem (2) admits the following integer programming formulation
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max

W∑
w=1

yw (3)

s.t.

L∑
l=1

Dwlxl ≥ cyw, w = 1, . . . ,W, (4)

L∑
l=1

xl = k, (5)

xl ∈ {0, 1}, l = 1, . . . , L, (6)

yw ∈ {0, 1}, w = 1, . . . ,W. (7)

The objective function (3) simply computes the number of c-covered time
windows over the time horizon of interest. Constraints (4) indicate whether
windows are c-covered by the subset of locations selected for deployment.
The cardinality constraint (5) ensures that exactly k locations are selected for
deployment, while constraints (6) and (7) express the binary nature of location
selection and time window coverage, respectively.

3.4 Connection with Coverage Problems

Besides the connection with submodular optimisation, which is made apparent
in Section 3.2, the problem considered in this paper is closely related to cover-
age problems already studied in the literature. The nature of these connections
is investigated more thoroughly in this subsection.

First, it is clear from its integer programming formulation that the problem
at hand can be interpreted as generalising the maximum coverage problem
[38], which is retrieved for c = 1. More specifically, it generalises maximum
coverage in the same way that set multicover [19] generalises set cover [40].
Indeed, in set cover, each element of the ground set must be covered at least
once, whereas each element must be covered multiple times in set multicover.

Barman et al. [7] studied a different coverage problem that can also be
construed as generalising maximum coverage, although in a less direct way.
Their problem is as follows. Given a collection of subsets of a ground set, the
goal is to select k subsets so as to maximise the number of times each element
of the ground set is covered, but the number of times an element is covered can
count towards the objective only up to a certain (integer) threshold ` > 0. In
other words, if an element is covered by more than ` subsets, its contribution
to the objective will only be `. By contrast, in this paper, an element will
contribute to the objective if and only if it is covered by at least c subsets.
This difference has far-reaching algorithmic implications, as the submodularity
of the objective function considered in [7] is preserved for any ` > 1, while
submodularity breaks down as soon as c > 1 in problem (2). Interestingly,
the problem considered in this paper and the one studied in [7] share the
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same linear programming relaxation (up to a positive constant multiplying
the objective). More formally, let Fc : [0, 1]L → R+ be such that

Fc(x) =
1

c

W∑
w=1

min
{
c,

L∑
l=1

Dwlxl

}
.

Then, it is easy to see that the linear programming relaxation of problem (3)
is equivalent to

max Fc(x) (8)

s.t.

L∑
l=1

xl = k

xl ∈ [0, 1], l = 1, . . . , L,

where Fc is essentially a scaled version of the objective considered in [7]. It is
also worth noting that Fc only coincides with fc on integral vectors (any of
which can be interpreted as the characteristic vector of a set L ⊆ L) if c = 1,
and the quality of the approximation of fc offered by Fc thus deteriorates as
the value of the coverage parameter increases.

Finally, a connection with a coverage problem on hypergraphs can also
be pointed out. More precisely, since there is a one-to-one correspondence be-
tween binary matrices and undirected hypergraphs [28] (i.e., any binary matrix
can be interpreted as the incidence matrix of an undirected hypergraph), the
present problem would be equivalent to the densest k-subhypergraph problem
[15] on c-uniform hypergraphs if

∑L
l=1Dwl = c for all w ∈ W (i.e., if each row

of D summed to c). Such a situation seems very unlikely to occur in practice,
however.

In summary, even though problem (2) is closely related to several coverage
problems studied in the literature, to the authors’ best knowledge, it has not
been considered as such elsewhere.

3.5 Solution Methods

This section discusses a number of solution methods, including state-of-the-art
mixed-integer programming solvers, a mixed-integer relaxation of problem (3),
two randomised greedy algorithms, a randomised local search algorithm, and
algorithms combining some of the aforementioned methods.

3.5.1 Mixed-Integer Programming Solvers

State-of-the-art mixed-integer programming solvers such as Gurobi [35], CPLEX
[18] and SCIP [29] typically implement a branch-and-bound (B&B) algorithm
augmented with a variety of heuristics, powerful pre-solve capabilities and
constraint programming techniques [1]. The core algorithm usually relies on a



Siting Renewable Power Generation Assets with Combinatorial Optimisation 11

linear programming engine to solve a sequence of relaxations, which are tight-
ened using a variety of cuts, while bounding schemes are used to efficiently
explore the search space. Such solvers have now reached a level of maturity
enabling them to tackle and solve large-scale MIP problems encountered in
industrial applications [30], in spite of their unfavourable computational com-
plexity. These methods can be used to directly solve the integer programming
formulation (3) or solve a relaxed version of it. In particular, the latter ap-
proach can usually be combined with rounding techniques or other algorithms
to yield efficient heuristics, as discussed in Sections 3.5.2, 3.5.6 and 4.2.

3.5.2 Mixed-Integer Relaxation

This algorithm directly solves a mixed-integer relaxation (MIR) of problem
(3) using a mixed-integer programming solver. The mixed-integer relaxation
is formed by relaxing the integrality constraint (7) of time window variables.
The key advantage of this approach lies in the fact that siting variables remain
integer in the solution and it is therefore not necessary to apply a rounding
scheme in order to recover a feasible solution. However, the worst-case time
complexity of the algorithm may not be polynomial. From a practical stand-
point, this can be mitigated by imposing lax requirements on the algorithm
used to solve the mixed-integer relaxation (e.g., stopping as soon as a moder-
ate optimality gap is achieved). Finally, note that this algorithm is essentially
equivalent to solving problem (8) with an integrality requirement added for
siting variables. Hence, one can intuitively expect the performance of this al-
gorithm to decrease as the value of the coverage parameter increases.

3.5.3 Randomised Greedy Algorithm

Greedy algorithms form a class of purely combinatorial algorithms that are
conceptually simple, usually offer good worst-case performance guarantees and
have low computational complexity. This is especially true for the problem of
maximising a submodular set function subject to a cardinality constraint [53]
and maximum coverage [38], for which the classic greedy algorithm achieves
an optimal approximation ratio with only O(Lk) queries to the objective.

In the context of problem (2), the classic greedy algorithm would start
from an empty set and, in each iteration, enumerate all unselected locations
and add a location l to the incumbent solution L ⊆ L so as to maximise the
objective fc(L∪{l}). This procedure would be repeated until k locations have
been added. However, if c > 1, the classic greedy algorithm will struggle to
find good locations in the first c−1 iterations since fc(L) = 0 if |L| < c. Hence,
the classic greedy algorithm will myopically select locations in the first c − 1
iterations, which most certainly has a detrimental impact on its performance.
To remedy this, an auxiliary objective function f̂c : 2L×N→ N is introduced,
which is such that

f̂c(L, i) =

{
fi+1(L) if i < c
fc(L) otherwise

. (9)
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This auxiliary function can be interpreted as implementing a moving threshold
that increases with the number of selected locations in order to drive the
selection of good locations by the greedy algorithm in the first c−1 iterations.
The auxiliary objective indeed reduces to the original objective function once
c− 1 locations have been selected.

In practice, many problems display some level of symmetry and it is fairly
common to identify several locations that yield the same (maximal) increase
in objective value in a given iteration. A number of tie-breaking mechanisms
can be envisaged. A popular deterministic mechanism consists in breaking ties
lexicographically. Nevertheless, computational experiments have shown that
randomising the tie-breaking process can be beneficial for problems related to
problem (2) [34]. Such a strategy is therefore adopted in this paper as well.
Algorithm 1 displays the resulting randomised greedy (RG) algorithm.

Algorithm 1 Randomised Greedy Algorithm

Input L, k, f̂c
L← ∅
i← |L|
while |L| < k do

L? ← arg maxl∈L\L f̂c(L ∪ {l}, i)
l← one location sampled from L? uniformly at random
L← L ∪ {l}
i← |L|

end while
Output L, f̂c(L, k)

3.5.4 Randomised Greedy Algorithm with Partial Enumeration

The randomised greedy algorithm discussed in Section 3.5.3 has complexity
O(kL) as a result of the fact that all unselected locations are enumerated
in each iteration. A straightforward way of speeding it up consists in using
partial enumeration instead. In addition, the partial enumeration process can
be randomised. This idea was already exploited by Mirzasoleiman et al. [49]
to design the first linear-time (randomised) algorithm achieving an (almost-
optimal) approximation ratio of 1 − 1/e − ε (guaranteed in expectation). In
their algorithm, the approximation ratio to be achieved dictated the size of
the subset sampled and enumerated in each iteration through ε.

Since no such result is currently available for problem (2), in this paper,
the number of locations sampled and enumerated in each iteration is set by
a fixed parameter p ∈ [0, 1] that represents a fraction of the total number of
candidate locations |L|. Algorithm 2 displays the resulting randomised greedy
algorithm with partial enumeration (RGP).
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Algorithm 2 Randomised Greedy Algorithm with Partial Enumeration

Input L, k, p, f̂c
L← ∅
i← |L|
s← dp|L|c
while |L| < k do

R← s locations sampled from L \ L uniformly at random

L? ← arg maxl∈R f̂c(L ∪ {l}, i)
l← one location sampled from L? uniformly at random
L← L ∪ {l}
i← |L|

end while
Output L, f̂c(L, k)

3.5.5 Simulated Annealing Local Search

Basic local search heuristics are known to sometimes have both undesirable
worst-case time complexity and weaker worst-case performance guarantees
than greedy algorithms for problems closely related to problem (2). For in-
stance, Nemhauser et al. [53] show that for monotone submodular maximi-
sation subject to a cardinality constraint, a classic deterministic exchange
heuristic can take a number of iterations that is exponential in the cardinality
of the solution before finishing. Although local search heuristics that terminate
in a polynomial number of iterations and have good worst-case performance
guarantees exist [26], their computational complexity remains too high to be
practical. On the other hand, simple randomised local search heuristics such
as the simulated annealing (SA) algorithm [10] have met with considerable
success in practice. In this paper, a local search heuristic that performs a
pre-specified number of iterations and is inspired by the simulated annealing
algorithm is employed.

Starting from a solution L0 ⊆ L, |L0| = k, the local search heuristic per-
forms a fixed number of iterations I ∈ N in the hope of improving the initial
solution. More specifically, in each iteration, a fixed number N ∈ N of neigh-
bouring solutions is drawn uniformly at random from the neighbourhood of
the incumbent solution L ⊆ L, |L| = k. This neighbourhood is formed by so-
lutions that share exactly k− r locations with the incumbent solution. Hence,
a neighbouring solution L̂ can be constructed from the incumbent solution
by selecting r different locations from L, r different locations from L \ L and
swapping them. Each of the N neighbouring solutions is tested against the in-
cumbent solution and stored in a temporary candidate solution L̃ if it is found
to outperform previously-explored neighbouring solutions. Their performance
is evaluated via the difference ∆̃ between the objectives achieved by the neigh-
bouring and incumbent solutions. Once N neighbouring solutions have been
explored, the candidate solution corresponds to a neighbouring solution that
maximises ∆̃ among all sampled solutions. Note that ∆̃ may be negative (i.e.,
if the algorithm does not manage to improve on the incumbent). If ∆̃ > 0, the
candidate solution becomes the new incumbent solution. By contrast, if ∆̃ < 0,
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whether the candidate solution becomes the new incumbent solution depends
on the outcome b of a random variable drawn from a Bernoulli distribution
with parameter p. This parameter depends on both ∆̃ and the so-called anneal-
ing temperature T (i). Roughly speaking, the annealing temperature controls
the extent to which the search space is explored in an attempt to find better
solutions and exit local optima. The temperature is specified by a temperature
schedule that provides a temperature T (i) for each iteration i. This procedure
is repeated until the maximum number of iterations I is reached. Algorithm 3
summarises these ideas.

Algorithm 3 Simulated Annealing Local Search Algorithm

Input L, L0, I, N, r, T, fc
1: L← L0

2: i← 0
3: while i < I do
4: ∆̃← −∞
5: n← 0
6: while n < N do
7: S+ ← r locations sampled from L \ L uniformly at random
8: S− ← r locations sampled from L uniformly at random
9: L̂← (L \ S−) ∪ S+

10: ∆̂← fc(L̂)− fc(L)

11: if ∆̂ > ∆̃ then
12: L̃← L̂
13: ∆̃← ∆̂
14: end if
15: n← n+ 1
16: end while
17: if ∆̃ > 0 then
18: L← L̃
19: else
20: p← exp(∆̃/T (i))
21: draw b from Bernoulli distribution with parameter p
22: if b = 1 then
23: L← L̃
24: end if
25: end if
26: i← i+ 1
27: end while
Output L, fc(L)

3.5.6 Combinations of Algorithms

The first algorithm combines the mixed-integer relaxation of problem (3) dis-
cussed in Section 3.5.2 and the simulated annealing local search algorithm
described in Section 3.5.5. The algorithm simply initialises the local search
algorithm with the solution of the former algorithm, and is therefore called
MIRSA.
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The second algorithm combines the randomised greedy algorithm with par-
tial enumeration discussed in Section 3.5.4 and the simulated annealing local
search algorithm described in Section 3.5.5. More precisely, the algorithm runs
RGP n times, takes the best solution and initialises the local search algorithm
with it. This algorithm will be referred to as RGPSA.

3.6 Implementation

The branch-and-bound/cut algorithm used in this paper is the one provided
by Gurobi 9.1 [35], which is a (commercial) state-of-the-art mixed-integer pro-
gramming solver. All other algorithms discussed in Section 3.5 were imple-
mented in the Julia programming language [11]. They are readily available as
stand-alone scripts [9] and have also been integrated in a Python 3.7 frame-
work that can be used for detailed asset siting analyses and facilitates data
pre- and post-processing [61]. In addition, the mixed-integer programming re-
laxation of problem (3) was formulated in the Julia-based algebraic modelling
language JuMP [20] and solved with Gurobi 9.1. All experiments were per-
formed on a workstation running under CentOs, with an 18-core Intel Xeon
Gold 6140 CPU clocking at 2.3 GHz and 256 GB RAM.

4 Numerical Experiments

In this section, the experimental set-up is described, the solution methods
presented in Section 3.5 are benchmarked, the physical nature of solutions
provided by the model is analysed, and a cross-validation analysis is carried
out in order to evaluate the extent to which the model and algorithms can
identify deployment patterns that perform well on unseen climatological data
from a subset of weather years.

4.1 Experimental Set-Up

The proposed RES siting method is illustrated by a case study focusing on the
deployment of onshore wind power generation assets in Europe. The resulting
problem instances, which can be constructed using scripts and data provided
in the following repositories [61,60], are described next.

Ten years of hourly-sampled wind data (from 2011 to 2020 included) with
a spatial resolution of 0.25◦ in both coordinate directions are retrieved from
the ERA5 reanalysis database [24]. It is assumed that onshore wind power
plants can be deployed at every ERA5 onshore grid point, resulting in L =
10138 candidate sites. A wind speed time series sl ∈ RT+ spanning T = 87648
time periods is associated to each site, and is converted into a capacity factor
time series sl ∈ [0, 1]T using a pre-specified transfer function. More precisely,
different transfer functions corresponding to different wind turbine models (the
Vestas V110, Enercon E103, Vestas V90 and Enercon E126 ) are considered in
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this paper. One of these transfer functions is assigned to each candidate site
based on its wind regime (taking its IEC class [39] into account) and passed
through an additional filter modelling the local wind smoothing effect that
results from the deployment of several wind turbines in the same area [54,36].
Candidate sites also have an effective technical potential κ ∈ R+ corresponding
to the maximum power generation capacity that may be deployed there. This
potential is assumed to be uniform across all sites and can be computed as

κ = ρp ×Acell × σ,

where ρp represents the power density of the chosen power generation tech-
nology (in MW/km2), Acell denotes the surface area of the ERA5 grid cell
(in km2) and σ is the dimensionless cell surface utilisation factor (since only
a share of the cell surface area can be exploited for power generation due
to competing land uses). In this paper, an onshore wind power density ρp of
3 MW/km2, a reference cell surface area Acell of 521 km2 and a surface utilisa-
tion factor σ of 0.3 are assumed, resulting in an effective technical potential of
around 0.47 GW per candidate site. The power output time series ul ∈ RT+ of
each candidate site is then computed by multiplying each entry of its capacity
factor time series s̄l by its effective technical potential κ.

The number of sites k to be selected for deployment is derived from a recent
study estimating that at least 263 GW of onshore wind power generation ca-
pacity should be available in Europe by 2030 in order to supply approximately
20% of the total European electricity demand [67]. Mapping this capacity re-
quirement to a number of sites is achieved via the following formula,

k = dC/κe, (10)

where C denotes the required capacity and d·e represents the ceiling function.
Hence, in total, k = 560 sites are required to deploy 263 GW of onshore wind
power plants.

A time window length of δ = 1 hour is considered, resulting in W = 87648
windows. Since δ = 1, each time window w corresponds to a time period t, thus
pwl = utl (i.e., the power output is not smoothed). In addition, the reference
production level αwl ∈ R+ used for each candidate site is assumed to be time-
dependent only (i.e., it is uniform across all locations). More precisely, αwl

is assumed to be proportional to the aggregate hourly European electricity
demand λt ∈ R+, which can be retrieved from the public ENTSO-E database
[23] for the 2011-2020 period. Hence, αwl = ζλt, where ζ = κ/λM ≈ 10−3 is
the ratio between the effective technical potential κ and the peak electricity
demand λM ≈ 525 GW. In other words, location l ∈ L covers window w ∈ W
if it produces more than 0.1% of the aggregate electricity demand over this
time window, which is consistent with the number of candidate sites to be
deployed, the share of the annual electricity demand to be supplied by onshore
wind power plants and average capacity factors of typical European onshore
wind power plants (around 25% [68]).
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In the next subsections, different values of the coverage parameter c ∈
{1, 28, 56, 112, 224, 336, 448, 560} are considered. The rationale behind the se-
lection of these values is twofold. First, testing a broad range of c values makes
it possible to assess the degree of spatiotemporal complementarity that Euro-
pean onshore wind sites exhibit and the extent to which this complementarity
can be leveraged to effectively supply a fraction of the electricity demand as
often as possible. For example, if c = 224, the model will identify the set of
onshore wind power plants that produce more than 0.1% of the aggregate elec-
tricity demand on an individual basis and jointly supply more than (roughly)
20% of it as often as possible. The model will also compute the fraction of the
time that they can do so. Second, as discussed in Section 3.4, the quality of
the linear and mixed-integer linear programming relaxations of problem (3)
is expected to decrease as the value of c increases. In other words, the value
of the coverage parameter also has algorithmic implications that should be
evaluated empirically.

4.2 Benchmarking

In this subsection, the algorithms described in Section 3.5 are benchmarked
against a state-of-the-art mixed-integer programming solver for different values
of the coverage parameter c ∈ {1, 28, 56, 112, 224, 336, 448, 560}. In the follow-
ing experiments, mixed-integer linear relaxations of problem (3) are solved
with Gurobi to an optimality gap of 1%. Moreover, p is set equal to 0.05 in
all algorithms relying on RGP. The parameters of the simulated annealing
local search heuristic are set to I = 2000, N = 500, r = 1, in all algo-
rithms that rely on it, and an exponentially-decreasing temperature schedule
T (i) = 100× exp(−10× i/I) is used. Finally, for RGPSA, n = 10.

First, the branch-and-bound-based (B&B) MIP solver is run with a time
limit of 12 hours (43200 seconds). The optimality gaps achieved by the solver
for different values of the coverage parameter are displayed in Table 1. The
solver manages to solve the c = 1 instance to optimality in 112 seconds, but
the time limit is reached for all other instances. In addition, the quality of the
optimality gaps produced by the solver decreases substantially as the value of
c increases, to the point of quickly becoming meaningless. This observation
confirms the intuition that problem (3) has a weak linear programming re-
laxation for high values of c and suggests that the solver does not manage to
improve it with cutting planes. This weak linear programming relaxation also
limits the ability of the solver to effectively prune the enumeration tree, reduce
the size of the search space and systematically identify good feasible solutions.
Notably, for high values of c, virtually all good feasible solutions are produced
by heuristics embedded within the solver. For the sake of completeness, run
times are also reported for various algorithms in Table 2. All heuristics run in
a few hundred seconds, which represents a small fraction of the time taken by
the MIP solver.
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c 1 28 56 112 224 336 448 560
Optimality Gap [%] 0.0 0.8 3.8 15.1 63.5 146.0 280.0 5533.0

Table 1: Optimality gaps returned by MIP solver for c ∈
{1, 28, 56, 112, 224, 336, 448, 560} (L = 10138, W = 87648 and k = 560).
All runs hit the time limit of 43200 seconds, except for c = 1, which was
completed in 112 seconds.

c B&B MIR RG RGP SA MIRSA RGPSA
1 112.0 111.9 878.6 47.8 191.1 303.0 669.1
28 43200.0 146.6 881.3 47.8 192.3 338.9 670.3
56 43200.0 185.4 885.4 46.9 199.3 384.7 668.3
112 43200.0 205.6 888.4 45.5 179.9 385.5 634.9
224 43200.0 179.6 910.8 48.2 184.2 363.8 666.2
336 43200.0 151.8 862.2 46.0 193.0 344.8 653.0
448 43200.0 140.7 915.5 48.4 180.9 321.6 664.9
560 43200.0 171.5 936.8 47.0 182.6 354.1 652.6

Table 2: Typical run times of different algorithms (in seconds) for the instance
considered (L = 10138, W = 87648 and k = 560). For randomised algorithms,
run times are averaged over twenty runs.

Since the output of randomised algorithms is inherently stochastic, run-
ning them several times is necessary to provide an accurate account of their
performance. In this paper, the number of times each algorithm was run
was determined based on some preliminary testing, and usually depended on
the variance of its output. More specifically, RG was run a hundred times,
RGP was run three hundred times, and each algorithm involving SA was run
fifty times. A random search (RS) algorithm was also run and explored one
million candidate solutions. Figure 1 displays the outcomes of these exper-
iments, where the objective returned by each algorithm is divided by the
objective of the solution provided by the MIP solver for each value of c ∈
{1, 28, 56, 112, 224, 336, 448, 560}.

For c = 1, all algorithms except the random search manage to find an opti-
mal solution. The solution found by RS is fairly close to being optimal, which
suggests that this instance is relatively easy to solve. For c = 28 and c = 56,
all algorithms except RS virtually achieve the same objective value. Although
these instances could not be solved to optimality by the MIP solver before
hitting the time limit, the optimality gaps (0.8% and 3.8%, respectively) im-
ply that the solutions produced by all algorithms are provably near-optimal
(especially for c = 28). For c = 112, all algorithms except RGP and RS are
again virtually tied. The output of RGP displays some variance, although the
quality of the median solution (indicated by a dark blue dot in Figure 1) that
it returns is fairly close to that of other algorithms. For c = 224, the three
algorithms that rely on the local search heuristic slightly outperform all other
algorithms. Note that the local search heuristic initialised with a random so-
lution achieves objective values comparable to those achieved by both MIRSA
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Fig. 1: Benchmarking of branch-and-bound-based (B&B) MIP solver, mixed-
integer relaxation (MIR), randomised greedy (RG), randomised greedy with
partial enumeration (RGP), random search (RS), simulated annealing ini-
tialised from a random solution (RSSA), mixed-integer relaxation combined
with simulated annealing local search (MIRSA), randomised greedy with par-
tial enumeration combined with simulated annealing local search (RGPSA)
for c ∈ {1, 28, 56, 112, 224, 336, 448, 560}.
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and RGPSA, which suggests that starting from a good solution is not partic-
ularly advantageous for this value of c. For c = 336, a starkly different picture
emerges. In particular, SA alone achieves an objective of zero (which is as good
as the random search), which rules out the possibility of it offering worst-case
performance guarantees for the problem at hand. On the other hand, MIRSA
and RGPSA find the best solutions, while RG outperforms B&B and displays
little variance. By contrast, the median RGP solution also outperforms B&B,
but its output range is quite broad. More precisely, the worst solutions re-
turned by RGP are not as good as the solution produced by B&B but the best
RGP solutions are comparable to the solutions of MIRSA and RGPSA. This
suggests that randomising the partial enumeration procedure can help escape
local optima in which RG gets stuck. For c = 448, MIRSA and RGPSA still
provide the best solutions, while the median RGP solution is almost as good,
achieving objectives that are almost twice as high as those returned by RG
and MIR. Nevertheless, a great deal of variance can be seen in the output of
RGP, which appears to have a bimodal (or multimodal) output distribution.
Finally, for c = 560, only greedy algorithms achieve a nonzero objective. This
suggests that neither MIR nor MIRSA can offer worst-case performance guar-
antees for the problem at hand (and for all values of c). RG outperforms B&B,
while the median RGP and RGPSA solutions significantly outperform B&B.
However, the output of RGP still suffers from a high level of variance, which
can also be observed for RGPSA.

Overall, at least three heuristics match or outperform the MIP solver across
all values of the coverage parameter c. Greedy algorithms perform particularly
well in most cases and are the only algorithms that achieve nonzero objective
values for all values of c. In particular, RGP is particularly effective but also
suffers from high levels of variance in its output. Hence, this suggests that
this algorithm should be run several times in order to obtain a good solution.
MIRSA is one of the best algorithms in most cases, and its output displays
virtually no variance, which is particularly appealing.

Figure 2 shows the local search trajectories of two of the best-performing
algorithms, namely MIRSA (in red) and RGPSA (in blue). For MIRSA, the
role played by the local search algorithm in improving solution quality in-
creases as c increases. This observation is consistent with the intuition that
the quality of solutions produced by solving the mixed-integer relaxation of
problem (3) decreases as c increases. For RGPSA, on the other hand, the con-
verse can be seen in Figure 2. The local search algorithm manages to improve
solution quality on virtually all runs when c is smaller than or equal to 224.
When c is greater than 224, however, the benefits of using the local search al-
gorithm are less obvious. For most trajectories, it fails to significantly improve
on the initial solution provided by the greedy algorithm. This observation also
suggests that the greedy stage of RGPSA manages to find local optima from
which it is difficult to escape.
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Fig. 2: Local search trajectories of MIRSA (red) and RGPSA (blue) for c ∈
{1, 28, 56, 112, 224, 336, 448, 560}.

4.3 Physical Interpretation

In this subsection, the physical nature of solutions provided by the model is
discussed. To this end, the sets of locations identified by the MIRSA algorithm
for c ∈ {1, 28, 56, 112, 224, 336, 448, 560} are carefully analysed and compared
with the set of locations that have the highest capacity factors (i.e., which



22 Mathias Berger et al.

maximise the annual electricity output). The latter deployment strategy, which
will be referred to as the PROD scheme, is fairly common in the wind power
industry, as it typically allows wind developers and producers to maximise
revenue.

Figure 3 shows the deployment patterns that both siting strategies yield,
while Table 3 displays the number of time windows covered by the sets of
locations identified by both schemes for each value of c.

c 1 28 56 112 224 336 448 560
MIRSA 74253 62846 54501 39916 20276 11228 5841 0
PROD 73521 59346 50608 37572 19882 9043 3149 0

Table 3: Number of time windows covered by the sets of locations identified
by MIRSA and the PROD scheme, respectively.

It can be seen in Figure 3 that most PROD sites are located around the
North Sea and Baltic Sea basins, in Ireland, the UK and on the southern coast
of the English Channel. A small number of sites are also selected in clusters
in the north of Finland and Norway. The average capacity factor of onshore
wind power plants selected by the PROD scheme is 43.9%.

For c = 1, the onshore wind sites selected by MIRSA are scattered fairly
uniformly across Europe. As discussed in Section 4.2, this instance is the only
one for which a provably-optimal solution could be found, and an objective
value of 74253 is achieved by the associated set of locations. This implies that
roughly 85% of time windows can be covered by at least one location through-
out the time horizon considered. Put differently, none of the 560 selected sites
manages to supply more than 0.1% of the aggregate electricity demand 15%
of the time. This result also suggests that the wind does not always blow
hard somewhere in Europe, and it therefore seems unlikely that onshore wind
power plants alone will be capable of supplying a constant share of the elec-
tricity demand at all times, even when strategically siting them at the level of
the continent.

For c ∈ {28, 56, 112}, the deployment patterns selected by MIRSA are
much less scattered than the one observed for c = 1. Instead, the model se-
lects clusters of sites in different European regions, such as southern France,
northern Spain or eastern Estonia. All of these areas are known to have very-
high-quality wind resources [5], which is consistent with the average capacity
factor values of 41.5%, 42.4% and 43.1% computed for these deployment pat-
terns. In addition, the geographical distance between these clusters suggests
that they experience distinct wind regimes influenced by local physical fea-
tures that the model manages to identify and exploit. For example, the two
clusters identified in southern France correspond to areas where the Mistral
or Tramontane blow [62]. As can be seen from Table 3, the objective values
achieved by the model steadily decrease as the value of c increases, which
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Fig. 3: Comparison between deployment patterns produced by MIRSA for
c ∈ {1, 28, 56, 112, 224, 336, 448, 560} (blue) and the deployment pattern max-
imising the annual electricity output (PROD, gold). Locations common to
both schemes are shown in green.
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implies that higher levels of joint electricity production can be sustained less
frequently.

For c = 224, the clusters of sites identified for c ∈ {28, 56, 112} are no longer
visible, and most sites are located in a broad region including the North Sea
and Baltic Sea basins. This set of locations also shares 480 sites with the PROD
scheme, the most of any set of locations selected by MIRSA, and achieves an
average capacity factor of 43.6%. The objective value of 39916 implies that
the deployment pattern identified by MIRSA can supply at least 20% of the
European electricity demand (roughly) 45.5% of the time.

For c ∈ {336, 448}, most sites are shifted towards the British Isles and
Ireland, resulting in a large cluster of neighbouring locations. This somewhat
counter-intuitive outcome can be explained as follows. Put simply, the diver-
sity and quality of European wind regimes is not rich enough to sustain the
joint production requirements imposed by these high values of c (which corre-
spond to supplying roughly 30% and 40% of the aggregate electricity demand,
respectively). Hence, the model identifies sets of locations that are very pro-
ductive on average (with average capacity factors around 42.7% and 41.7%,
respectively) and located close to each other for them to produce electricity
at the same time.

For c = 560, MIRSA does not manage to identify a solution whose objective
is nonzero and the resulting set of locations is therefore no better than a set
of locations that would be selected uniformly at random, which explains the
fairly uniform distribution of sites across Europe and the much lower average
capacity factor (around 23.8%).

Finally, it is worth inspecting the residual demand time series associated
with each deployment pattern. Figure 4 shows the cumulative distribution
functions of residual demand times series obtained by subtracting the ag-
gregate electricity production time series of each deployment pattern from a
downscaled electricity demand time series. More precisely, each entry of the
original aggregate electricity demand time series was multiplied by 0.2 in order
to obtain a time series representing the share of the electricity demand that
should ideally be supplied by wind power plants at all times. A positive value
therefore implies a production shortage while a negative value corresponds to
a production surplus. The fact that a high percentage of residual demand reali-
sations shown in Figure 4 are positive for all deployment patterns confirms the
earlier claim that onshore wind power plants will not be capable of supplying
a constant share of the electricity demand at all times.

4.4 Cross-Validation

In this subsection, a cross-validation analysis is carried out in order to eval-
uate the extent to which the model and algorithms can successfully identify
deployment patterns that perform well on previously unseen climatological
data from historical data spanning a small number of weather years.
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Fig. 4: Cumulative distribution functions of residual demand time series con-
structed by subtracting aggregate electricity production time series from a
downscaled aggregate electricity demand time series.

In its simplest form, cross-validation works as follows. The data at hand is
first split into training and testing sets (that are usually disjoint or have very
little overlap). A model is then trained using data from the training set, and
its performance is evaluated on the testing set. For example, in a supervised
learning context where labelled data is readily available, the testing phase is
rather straightforward and, roughly speaking, consists in measuring how far
off the outcomes predicted by the model are from actual realisations in the
testing data. The basic idea is that a good model should perform well on both
training and testing sets (a situation where a model performs extremely well
on training data and poorly on testing data is usually called overfitting, which
is particularly undesirable).

In this case, the training and testing sets can be viewed as sets of weather
years for which renewable resource and electricity load data are available.
Since ten years of meteorological data are available, the training and testing
sets could for instance contain five years each, with no year in common. In
the training phase, problem (2) would be solved using one of the algorithms
discussed in Section 3.5 in order to identify a set of promising locations and
their objective would be computed using data from the testing set. However, no
labelled data is available for this problem and a set of locations that is optimal
for the testing data is not known a priori. Hence, in order to evaluate how
good the locations identified using the training data are, one of the algorithms
of Section 3.5 (preferably the same as the one used in the training stage)
must be used to solve the problem for the testing data as well. Then, the
difference between the testing objectives computed for locations identified in
the training and testing stages can be used to measure the performance of
the model. This procedure is essentially equivalent to training a second model
on the testing set and comparing the performance of both models on the
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testing set. Let f?train denote the objective value achieved on the testing set
by locations identified using data from the training set, and let f?test denote
the objective value achieved on the testing set by locations identified using
data from the testing set. The performance of the model is evaluated using
the relative error e ∈ R,

e =
f?test − f?train

f?test
. (11)

Note that a positive relative error indicates that the model trained on the
testing set outperforms the model trained on the training set when evaluat-
ing their performance on the testing set, while the opposite holds true for a
negative relative error. Ideally, the model and algorithms would consistently
achieve values of the relative error that are close to zero.

The values of the coverage parameter considered here are the same as the
ones studied in Sections 4.2 and 4.3, and the analysis is divided into two parts.
In the first part, balanced training and testing sets including five weather years
each are used. In the second part, unbalanced training and testing sets that
include seven and three weather years, respectively, are employed. Reducing
the size of the testing set increases the risk of overfitting for locations iden-
tified using the testing data, and provides clues as to the robustness of the
proposed model. Then, in both set-ups, one cross-validation experiment con-
sists in sampling a pre-specified number of weather years without repetition
from the pool of ten years for which data is available in order to construct the
training set, while the remaining years are used to build the testing set.

Fig. 5: Results of cross-validation analysis carried out with MIRSA. In the
experiment with balanced sets (red), both training and testing sets include
five years of data. In the unbalanced set-up (blue), the training and testing
sets include seven and three weather years, respectively. Fifty independent
experiments were carried out for each value of c and set-up. No box plot is
shown for c = 560 since MIRSA fails to identify any solution whose objective
value is nonzero.
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Figure 5 shows the outcomes of the cross-validation experiments performed
with MIRSA. In each experiment, MIRSA was run once for training and once
for testing. Fifty independent experiments were carried out for each set-up. The
relative error range clearly increases as c increases in both the balanced and
unbalanced set-ups. In the balanced set-up, all realisations of the relative error
have positive values smaller than 5%, while the median relative error is positive
and under 2%, as long as c is smaller than or equal to 224. This indicates that
little to no overfitting takes place for these values of c. In addition, the fact
that the relative error is positive implies that the locations selected based on
the testing set slightly outperform the ones identified using the training data.
For values of c greater than 224, although the median relative error remains
positive, some realisations of the relative error have negative values, which
implies that the locations identified using the training data outperform the
ones selected based on the testing data. This counter-intuitive observation can
be partly explained by the fact that the algorithms used to identify deployment
patterns are approximate in nature and can therefore produce solutions that
are heavily suboptimal. In the unbalanced set-up, the outcomes of the cross-
validation experiments are broadly comparable to the ones observed in the
balanced set-up for values of c smaller than or equal to 224, although a few
realisations of the relative error already have negative values for c = 224. For
values of c greater than 224, however, most realisations of the relative error
are consistently negative.

Fig. 6: Results of cross-validation analysis performed with a variant of RGP.
In the experiment with balanced sets (red), both training and testing sets
include five years of meteorological data. In the unbalanced set-up (blue), the
training and testing sets include seven and three weather years, respectively.
Fifty independent experiments were carried out for each value of c.

Figure 6 shows the outcomes of the cross-validation experiments carried
out with a variant of RGP. More precisely, in each experiment, RGP was run
twenty five times and the solution with the highest objective was retained. This
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procedure was performed for both training and testing, and fifty independent
experiments were carried out for each set-up. In the balanced set-up, except
for c = 560, the median relative error remains positive and close to 1%. In
addition, the relative error range remains between -2% and 4% for values of
c /∈ {224, 560}. For c = 224, the relative error range is much broader, and it
blows up for c = 560. In the unbalanced set-up, the median relative error stays
positive for c ∈ {1, 28, 56} and becomes negative for c ∈ {112, 224, 336, 448}
but stays between -1% and 1%. The relative error range is also broader for
c ∈ {224, 336, 448}, although most realisations are between -4% and 4%. In
both set-ups, the median relative error is around 10% for c = 560 and the
relative error range covers several dozens of percentage points.

Overall, these results suggest that at least one algorithm can successfully
and reliably identify patterns in the climatological data and select locations
that perform well on previously unseen data using both balanced and unbal-
anced training and testing sets containing a few different weather years, as
long as the value of the coverage parameter is smaller than 560.

5 Conclusion

The problem of siting renewable power generation assets while accounting for
their spatiotemporal complementarity is studied in this paper. The problem is
cast as a combinatorial optimisation problem selecting a pre-specified number
of sites so as to minimise the number of simultaneous low electricity production
events that they experience relative to a pre-specified reference production
level. It is shown that the resulting model is closely related to submodular
optimisation and generalises the well-known maximum coverage problem.

Realistic problem instances inspired by the problem of siting onshore wind
power plants in Europe are constructed and used to benchmark randomised
greedy, local search and relaxation-based algorithms against a state-of-the-art
MIP solver for different values of the so-called coverage parameter. At least
three heuristics are found to consistently provide solutions that are at least
as good or strictly better than the ones returned by the MIP solver at a
fraction of the computational cost across all values of the coverage parameter.
In particular, randomised greedy algorithms perform particularly well and are
the only algorithms that achieve nonzero objective values across all instances
considered.

The physical nature of solutions provided by the model is also analysed
and the deployment patterns are shown to change substantially based on the
implicit joint electricity production requirement imposed by the coverage pa-
rameter. Results also suggest that the wind does not always blow hard some-
where in Europe, and it therefore seems unlikely that onshore wind power
plants will be capable of supplying a constant share of the electricity demand
at all times, even when strategically siting them on a continental scale.

Finally, the results of the cross-validation analysis indicate that the model
can successfully leverage historical data spanning a small number of weather
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years in order to reliably identify deployment patterns that perform well on
previously unseen climatological data, except for the edge case where the cov-
erage parameter is set equal to the number of locations to be selected.

Several research directions would be worth pursuing in future work. From
an algorithmic perspective, analysing the greedy algorithms discussed in Sec-
tions 3.5.3 and 3.5.4 more closely for c > 1 would be useful to understand
whether they can indeed provide worst-case performance guarantees. Going
beyond traditional worst-case analyses (e.g., by performing a parameterised
performance guarantee analysis [64]) would also bring additional insight into
the performance of the proposed algorithms. From a modelling perspective,
if the cost of siting renewable power generation assets was known for all lo-
cations, a budget constraint could replace the cardinality constraint in order
to introduce basic economic considerations into siting decisions. The algo-
rithmic implications of this update should be carefully considered, however,
as such problems are known to be particularly challenging [13]. Finally, us-
ing the present model as a pre-processing step to select locations used in
integrated power system expansion planning assessments [45] that have much
lower spatial and temporal resolutions and include network models would pro-
vide insight into the impact that renewable asset siting decisions and resource
complementarity may have on power system design and economics.
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