Guo, Huimin ; Université de Liège - ULiège > Terra
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > SMARTECH
Hao, Y.; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
Fan, X.; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Everaert, Nadia ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Yang, X.; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
Ren, G.; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis
Publication date :
2020
Journal title :
Food Science and Nutrition
eISSN :
2048-7177
Publisher :
Wiley-Blackwell
Volume :
8
Issue :
3
Pages :
1415-1422
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Chinese Academy of Agricultural Sciences, CAAS19227527D-01International Science and Technology Cooperation Programme, ISTCP: KY20142023
Aluko, R. E., & Monu, E. (2003). Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science, 68(4), 1254–1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
Bleakley, S., Hayes, M., O’ Shea, N., Gallagher, E., & Lafarga, T. (2017). Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods, 6(12), 108. https://doi.org/10.3390/foods6120108
Brinegar, C., Sine, B., & Nwokocha, L. (1996). High-cysteine 2S seed storage proteins from quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 44(7), 1621–1623. https://doi.org/10.1021/jf950830+
Cavazos, A., & de Mejia, E. G. (2013). Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Comprehensive Reviews in Food Science and Food Safety, 12(4), 364–380. https://doi.org/10.1111/1541-4337.12017
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57, 1618–1630. https://doi.org/10.1080/10408398.2014.1001811
Fu, Y., Wu, W., Zhu, M. P., & Xiao, Z. G. (2016). In silico assessment of the potential of patatin as a precursor of bioactive peptides. Journal of Food Biochemistry, 40, 366–370. https://doi.org/10.1111/jfbc.12213
Fu, Y., Young, J. F., Lokke, M. M., Lametsch, R., Aluko, R. E., & Therkildsen, M. (2016). Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods, 24, 196–206. https://doi.org/10.1016/j.jff.2016.03.026
Ghribi, A. M., Sila, A., Przybylski, R., Nedjar-Arroume, N., Makhlouf, I., Blecker, C., … Besbes, S. (2015). Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. Journal of Functional Foods, 12, 516–525. https://doi.org/10.1016/j.jff.2014.12.011
Gomez, H. L. R., Peralta, J. P., Tejano, L. A., & Chang, Y. W. (2019). In silico and in vitro assessment of portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. International Journal of Molecular Sciences, 20, 5191. https://doi.org/10.3390/ijms20205191
Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera, J., Baldeón, M. E., & Raskin, I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431–445. https://doi.org/10.1111/1541-4337.12135
Han, R. X., Maycock, J., Murray, B. S., & Boesch, C. (2019). Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food Research International, 115, 283–291. https://doi.org/10.1016/j.foodres.2018.12.015
Juillerat-Jeanneret, L. (2014). Dipeptidyl peptidase IV and its inhibitors: Therapeutics for Type 2 diabetes and what else? Journal of Medicinal Chemistry, 57(6), 2197–2212. https://doi.org/10.1021/jm400658e
Kęska, P., & Stadnik, J. (2016). Porcine myofibrillar proteins as potential precursors of bioactive peptides – An in silico study. Food and Function, 7, 2878–2885. https://doi.org/10.1039/C5FO01631B
Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP) - IV inhibitors by an in silico approach. Journal of Functional Foods, 4(2), 403–422. https://doi.org/10.1016/j.jff.2012.01.008
Lee, S. Y., & Hur, S. J. (2017). Antihypertensive peptides from animal products, marine organisms, and plants. Food Chemistry, 228, 506–517. https://doi.org/10.1016/j.foodchem.2017.02.039
Lin, K., Zhang, L. W., Han, X., Meng, Z. X., Zhang, J. M., Wu, Y. F., & Cheng, D. Y. (2018). Quantitative structure-activity relationship modeling coupled with molecular docking analysis in screening of angiotensin I-converting enzyme inhibitory peptides from Qula casein hydrolysates obtained by two-enzyme combination hydrolysis. Journal of Agricultural and Food Chemistry, 66, 3221–3228. https://doi.org/10.1021/acs.jafc.8b00313
Lin, K., Zhang, L. W., Han, X., Xin, L., Meng, Z. X., Gong, P. M., & Cheng, D. Y. (2018). Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry, 254, 340–347. https://doi.org/10.1016/j.foodchem.2018.02.051
Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91, 965–980. https://doi.org/10.1134/S1061934808070216
Minkiewicz, P., Dziuba, J., & Michalska, J. (2011). Bovine meat proteins as potential precursors of biologically active peptides – A computational study based on the BIOPEP database. Food Science and Technology International, 17(1), 39–45. https://doi.org/10.1177/1082013210368461
Miralles, B., Amigo, L., & Recio, I. (2018). Critical review and perspectives on food derived antihypertensive peptides. Journal of Agricultural and Food Chemistry, 66, 9384–9390. https://doi.org/10.1021/acs.jafc.8b02603
Nongonierma, A. B., & FitzGerald, R. J. (2017). Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology, 69, 289e305. https://doi.org/10.1016/j.tifs.2017.03.003
Nongonierma, A. B., Lalmahomed, M., Paolella, S., & FitzGerald, R. J. (2017). Milk protein isolate (MPI) as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 231, 202–211. https://doi.org/10.1016/j.foodchem.2017.03.123
Nongonierma, A. B., Maux, S. L., Dubrulle, C., Barre, C., & FitzGerald, R. J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112–118. https://doi.org/10.1016/j.jcs.2015.07.004
Panjaitan, F. C. A., Gomez, H. Y. R., & Chang, Y. W. (2018). In silico analysis of bioactive peptides released from giant grouper (Epinephelus lanceolatus) roe proteins identified by proteomics approach. Molecules, 23, 2910. https://doi.org/10.3390/molecules23112910
Prakash, D., & Pal, M. (1998). Chenopodium: Seed protein, fractionation and amino acid composition. International Journal of Food Sciences and Nutrition, 49(4), 271–275. https://doi.org/10.3109/09637489809089398
Singha, B. P., Vij, S., & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171–179. https://doi.org/10.1016/j.peptides.2014.01.022
Tu, M. L., Cheng, S. Z., Lu, W. H., & Du, M. (2018). Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends in Analytical Chemistry, 105, 7–17. https://doi.org/10.1016/j.trac.2018.04.005
Udenigwe, C. C., & Fogliano, V. (2017). Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? Journal of Functional Foods, 35, 9–12. https://doi.org/10.1016/j.jff.2017.05.029
Udenigwe, C. C., & Mohan, A. (2014). Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. Journal of Functional Foods, 8C, 45–52. https://doi.org/10.1016/j.jff.2014.03.002
Uraipong, C., & Zhao, J. (2018). In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme. Journal of the Science of Food and Agriculture, 98, 758–766. https://doi.org/10.1002/jsfa.8523
Venuste, M., Zhang, X. M., Shoemaker, C. F., Karangwa, E., Abbas, S., & Kamdem, P. E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food and Function, 4, 811–820. https://doi.org/10.1039/c3fo30347k
Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024
Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105, 403–411. https://doi.org/10.1016/j.foodres.2017.11.036